Skip to main content
Log in

Two New 2D and 1D Ni(II) Coordination Polymers Bridged by Vanadium-Substituted Keggin Polyoxotungstophosphates: Hydrothermal Synthesis and Crystal Structure

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two coordination polymers based on vanadium-substituted Keggin polyoxotungstophosphates as bridging ligands, {[Ni(4,4′-bipy)1.5(OH)(H2O)]2[H3PW10V2O40]}·4H2O (4,4′-bpy = 4,4′-bipyridine) 1 and {[Ni(dpa)2][Ni(dpa)(H2O)3]2[PW9V3O40]}·4H2O (dpa = 2,2′-dipyridylamine) 2, have been obtained by hydrothermal reactions and characterized by elemental analysis, IR, XRD, TGA and single-crystal X-ray Diffraction analysis. Compound 1 is a 2D layered structure built from 1D infinite zigzag {Ni2(4,4′-bipy)3(OH)2(H2O)2} 2+n chains bridged via [H3PW10V2O40]2− anions. Compound 2 exhibits a one-dimensional chain-like structure constructed from [Ni(dpa)2]2+ fragments bridged via bis-supported Keggin polyoxoanions [Ni(dpa)(H2O)3]2[PW9V3O40]2−. The two examples demonstrate that vanadium-substituted Keggin polyoxometalates have greater coordination capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. L. Wei, C. He, W. J. Hua, C. Y. Duan, S. H. Li, and Q. J. Meng (2006). J. Am. Chem. Soc. 128, 13318.

    Article  CAS  Google Scholar 

  2. C. Inman, J. M. Knaust, and S. W. Keller (2002). Chem. Commun. 156.

  3. C. Y. Sun, S. X. Liu, D. D. Liang, K. Z. Shao, Y. H. Ren, and Z. M. Su (2009). J. Am. Chem. Soc. 131, 1883.

    Article  CAS  Google Scholar 

  4. Z. G. Han, Y. L. Zhao, J. Peng, A. X. Tian, Q. Liu, J. F. Ma, E. B. Wang, and N. H. Hu (2005). CrystEngComm. 7, 380.

    Article  CAS  Google Scholar 

  5. B. Wang, R. N. Vyas, and S. Shaik (2007). Langmuir. 23, 11120.

    Article  CAS  Google Scholar 

  6. Z. M. Zhang, J. Liu, E. B. Wang, C. Qin, Y. G. Li, Y. F. Qi, and X. L. Wang (2008). Dalton Trans. 463.

  7. Y. G. Li, L. M. Dai, Y. H. Wang, X. L. Wang, E. B. Wang, Z. M. Su, and L. Xu (2007). Chem. Commun. 2593.

  8. L. M. Dai, W. S. You, Y. G. Li, E. B. Wang, and C. Y. Huang (2009). Chem. Commun. 2721.

  9. X. L. Wang, H. Y. Lin, Y. F. Bi, B. K. Chen, and G. C. Liu (2008). J. Solid State Chem. 181, 556.

    Article  CAS  Google Scholar 

  10. Q. G. Zhai, X. Y. Wu, S. M. Chen, L. J. Chen, and C. Z. Lu (2007). Inorg. Chim. Acta 360, 3484.

    Article  CAS  Google Scholar 

  11. M. L. Wei, C. He, Q. Z. Sun, Q. J. Meng, and C. Y. Duan (2007). Inorg. Chem. 46, 5957.

    Article  CAS  Google Scholar 

  12. X. J. Kong, Y. P. Ren, P. Q. Zheng, Y. X. Long, L. S. Long, R. B. Huang, and L. S. Zheng (2006). Inorg. Chem. 45, 10702.

    Article  CAS  Google Scholar 

  13. W. J. Wang, L. Xu, G. G. Gao, X. Z. Liu, and L. Liu (2009). Inorg. Chem. Commun. 12, 259.

    Article  CAS  Google Scholar 

  14. H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.

    Article  CAS  Google Scholar 

  15. M. X. Li, J. Du, J. P. Wang, and J. Y. Niu (2007). Inorg. Chem. Commun. 10, 1391.

    Article  CAS  Google Scholar 

  16. Y. P. Ren, X. J. Kong, X. Y. Hu, M. Sun, L. S. Long, R. B. Huang, and L. S. Zheng (2006). Inorg. Chem. 45, 4016.

    Article  CAS  Google Scholar 

  17. J. Q. Sha, J. Peng, H. J. Pang, A. X. Tian, J. Chen, P. P. Zhang, and M. Zhu (2008). Solid State Sci. 10, 1491.

    Article  CAS  Google Scholar 

  18. S. L. Li, Y. Q. Lan, J. F. Ma, J. Yang, J. Liu, Y. M. Fu, and Z. M. Su (2008). Dalton Trans. 2015.

  19. Y. P. Ren, X. J. Kong, L. S. Long, R. B. Huang, and L. S. Zheng (2006). Cryst. Growth Des. 6, 572.

    Article  CAS  Google Scholar 

  20. C. J. Zhang, Y. G. Chen, H. J. Pang, D. M. Shi, M. X. Hu, and J. Li (2008). Inorg. Chem. Commun. 11, 765.

    Article  CAS  Google Scholar 

  21. Y. P. Bai, Y. G. Li, E. B. Wang, X. L. Wang, Y. Lu, and L. Xu (2005). J. Mol. Struct. 752, 54.

    Article  CAS  Google Scholar 

  22. A. X. Tian, Z. G. Han, J. Peng, J. Ying, J. Q. Sha, B. X. Dong, J. L. Zhai, and H. S. Liu (2008). Inorg. Chim. Acta. 361, 1332.

    Article  CAS  Google Scholar 

  23. J. Chen, J. Q. Sha, J. Peng, Z. Y. Shi, B. X. Dong, and A. X. Tian (2007). J. Mol. Struct. 846, 128.

    Article  CAS  Google Scholar 

  24. H. Jin, Y. F. Qi, E. B. Wang, Y. G. Li, X. L. Wang, C. Qin, and S. Chang (2006). Cryst. Growth Des. 6, 2693.

    Article  CAS  Google Scholar 

  25. Y. Xu, J. Q. Xu, K. L. Zhang, Y. Zhang, and X. Z. You (2000). Chem. Commun. 153.

  26. Z. H. Yi, X. B. Cui, X. Z. Zhang, G. D. Yang, J. Q. Xu, X. Y. Yu, H. H. Yu, and W. J. Duan (2009). J. Mol. Struct. 891, 123.

    Article  Google Scholar 

  27. Z. Y. Shi, X. J. Gu, J. Peng, and Y. H. Chen (2005). J. Solid State Chem. 178, 1988.

    Article  CAS  Google Scholar 

  28. J. Q. Sha, J. Peng, S. J. Zhou, M. Zhu, L. Han, and D. Chen (2008). J. Clust. Sci. 19, 499.

    Article  CAS  Google Scholar 

  29. C. M. Liu, D. Q. Zhang, and D. B. Zhu (2005). Cryst. Growth. Des. 5, 1639.

    Article  CAS  Google Scholar 

  30. C. M. Liu, D. Q. Zhang, M. Xiong, and D. B. Zhu (2002). Chem. Commun. 1416.

  31. M. Yuan, Y. G. Li, E. B. Wang, C. G. Tian, L. Wang, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). Inorg. Chem. 42, 3670.

    Article  CAS  Google Scholar 

  32. C. X. Li, R. Cao, K. P. O’Halloran, H. Y. Ma, and L. Z. Wu (2008). Electrochim. Acta. 54, 484.

    Article  CAS  Google Scholar 

  33. J. Chen, J. Q. Sha, J. Peng, Z. Y. Shi, A. X. Tian, and P. P. Zhang (2008). J. Mol. Struct. 917, 10.

    Article  Google Scholar 

  34. J. W. Zhao, S. T. Zheng, and G. Y. Yang (2008). J. Solid State Chem. 181, 2205.

    Article  CAS  Google Scholar 

  35. J. P. Wang, J. W. Zhao, X. Y. Duan, and J. Y. Niu (2006). Cryst. Growth Des. 6, 507.

    Article  CAS  Google Scholar 

  36. G. Y. Luan, Y. G. Li, S. T. Wang, E. B. Wang, Z. B. Han, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). DaltonTrans. 233.

  37. P. J. Domaille (1984). J. Am. Chem. Soc. 106, 7677.

    Article  CAS  Google Scholar 

  38. W. T. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102.

    Article  CAS  Google Scholar 

  39. M. Soler, W. Wernsdorfer, K. Folting, M. Pink, and G. Christou (2004). J. Am. Chem. Soc. 126, 2156.

    Article  CAS  Google Scholar 

  40. M. J. Watras and A. V. Teplyakov (2005). J. Phys. Chem. B. 109, 8928.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20773057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2009_273_MOESM1_ESM.doc

IR spectra, TG, XRD, numbering scheme for substituted Keggin ions and selected bond distances and angles of compound 1 and 2 can be found in the supplementary materials. (DOC 2718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., You, W., Dai, L. et al. Two New 2D and 1D Ni(II) Coordination Polymers Bridged by Vanadium-Substituted Keggin Polyoxotungstophosphates: Hydrothermal Synthesis and Crystal Structure. J Clust Sci 20, 707–716 (2009). https://doi.org/10.1007/s10876-009-0273-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-009-0273-2

Keywords

Navigation