Skip to main content

Advertisement

Log in

“Deficiency in ELF4, X-Linked”: a Monogenic Disease Entity Resembling Behçet’s Syndrome and Inflammatory Bowel Disease

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet’s- and inflammatory bowel disease (IBD)-like disorder termed “deficiency in ELF4, X-linked” (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

May be available upon request.

References

  1. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18:832–42. https://www.nature.com/articles/ni.3777

    Article  PubMed  CAS  Google Scholar 

  2. Rood JE, Behrens EM. Inherited autoinflammatory syndromes. Annu Rev Pathol. 2022;17:227–49. https://www.annualreviews.org/doi/10.1146/annurev-pathmechdis-030121-041528.

  3. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42:1473–507. https://doi.org/10.1007/s10875-022-01289-3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): A new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46:3340–8. https://doi.org/10.1002/art.10688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, van Royen-Kerkhoff A, et al. An autoinflammatory disease with deficiency of the interleukin-1–receptor antagonist. N Engl J Med. 2009;360:2426–37. https://doi.org/10.1056/NEJMoa0807865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cudrici C, Deuitch N, Aksentijevich I. Revisiting TNF receptor-associated periodic syndrome (TRAPS): current perspectives. Int J Mol Sci. 2020;21:3263. Available from: https://www.mdpi.com/1422-0067/21/9/3263/htm

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Konno H, Chinn IK, Hong D, Orange JS, Lupski JR, Mendoza A, et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 2018;23:1112–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370:911–20. https://doi.org/10.1056/nejmoa1307361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhou Q, Wang H, Schwartz DM, Stoffels M, Hwan Park Y, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2015;48:67–73. Available from: https://www.nature.com/articles/ng.3459

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev. 2019;287:162–85. https://doi.org/10.1111/imr.12726.

    Article  PubMed  CAS  Google Scholar 

  12. Batura V, Muise AM. Very early onset IBD: novel genetic aetiologies. Curr Opin Allergy Clin Immunol. 2018;18(6):470–80. https://journals.lww.com/co-allergy/Fulltext/2018/12000/Very_early_onset_IBD__novel_genetic_aetiologies.5.aspx.

  13. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147:990–1007.e3.

    Article  PubMed  Google Scholar 

  14. Yazici H, Seyahi E, Hatemi G, Yazici Y. Behçet syndrome: A contemporary view. Nat Rev Rheumatol. 2018;14:107–19. Available from: https://www.nature.com/articles/nrrheum.2017.208

    Article  PubMed  CAS  Google Scholar 

  15. Chen J, Yao X. A contemporary review of Behcet’s syndrome. Clin Rev Allergy Immunol. 2021;61:363–76. https://doi.org/10.1007/s12016-021-08864-3.

    Article  PubMed  Google Scholar 

  16. Tyler PM, Bucklin ML, Zhao M, Maher TJ, Rice AJ, Ji W, et al. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat Immunol. 2021;22:1118–26. Available from: https://www.nature.com/articles/s41590-021-00984-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sun G, Qiu L, Yu L, An Y, Ding Y, Zhou L, et al. Loss of function mutation in ELF4 causes autoinflammatory and immunodeficiency disease in human. J Clin Immunol. 2022;1:1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35266071

    Google Scholar 

  18. Sun G, Wu M, Lv Q, Yang X, Wu J, Tang W, et al. A multicenter cohort study of immune dysregulation disorders caused by ELF4 variants in China. J Clin Immunol. 2023;1:1–7. https://doi.org/10.1007/s10875-023-01453-3.

    Article  CAS  Google Scholar 

  19. Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;303:11–34.

    Article  PubMed  CAS  Google Scholar 

  20. Choi H-J, Geng Y, Cho H, Li S, Giri PK, Felio K, et al. Differential requirements for the Ets transcription factor Elf-1 in the development of NKT cells and NK cells. Blood. 2011;117:1880–7. Available from: http://ashpublications.org/blood/article-pdf/117/6/1880/1341410/zh800611001880.pdf

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wurster AL, Siu G, Leiden JM, Hedrick SM. Elf-1 binds to a critical element in a second CD4 enhancer. Mol Cell Biol. 1994;14:6452–63. Available from: https://journals.asm.org/doi/abs/10.1128/mcb.14.10.6452-6463.1994

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018;175:1701–1715.e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sivina M, Yamada T, Park CS, Puppi M, Coskun S, Hirschi K, et al. The transcription factor E74-like factor controls quiescence of endothelial cells and their resistance to myeloablative treatments in bone marrow. Arterioscler Thromb Vasc Biol. 2011;31:1185–91. Available from: https://www.ahajournals.org/doi/abs/10.1161/ATVBAHA.111.224436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sashida G, Liu Y, Elf S, Miyata Y, Ohyashiki K, Izumi M, et al. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation. Mol Cell Biol. 2009;29:3687. /pmc/articles/PMC2698769/.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Curina A, Termanini A, Barozzi I, Prosperini E, Simonatto M, Polletti S, et al. High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins. Genes Dev. 2017;31:399. Available from: /pmc/articles/PMC5358759/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kang Y, Wu T, He Y, He Y, Zhao D. Elf4 regulates lysosomal biogenesis and the mTOR pathway to promote clearance of Staphylococcus aureus in macrophages. FEBS Lett. 2021;595:881–91.

    Article  PubMed  CAS  Google Scholar 

  27. Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J, et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell. 2006;9:175–87.

    Article  PubMed  CAS  Google Scholar 

  28. Lee JM, Libermann TA, Cho JY. The synergistic regulatory effect of Runx2 and MEF transcription factors on osteoblast differentiation markers. J Periodontal Implant Sci. 2010;40:39. Available from: /pmc/articles/PMC2872803/

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sashida G, Bae N, Di Giandomenico S, Asai T, Gurvich N, Bazzoli E, et al. The Mef/Elf4 transcription factor fine tunes the DNA damage response. Cancer Res. 2011;71:4857–65. Available from: https://cancerres.aacrjournals.org/content/71/14/4857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yao JJ, Liu Y, Lacorazza HD, Soslow RA, Scandura JM, Nimer SD, et al. Tumor promoting properties of the ETS protein MEF in ovarian cancer. Oncogene. 2007;26:4032–7. Available from: https://www.nature.com/articles/1210170

    Article  PubMed  CAS  Google Scholar 

  31. Mao S, Frank RC, Zhang J, Miyazaki Y, Nimer SD. Functional and physical interactions between AML1 proteins and an ETS protein, MEF: Implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol. 1999;19:3635. Available from: /pmc/articles/PMC84165/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ando K, Tsushima H, Matsuo E, Horio K, Tominaga-Sato S, Imanishi D, et al. Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation. J Biol Chem. 2013;288:9457. Available from: /pmc/articles/PMC3611015/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Moore SDP, Offor O, Ferry JA, Amrein PC, Morton CC, Dal Cin P. ELF4 is fused to ERG in a case of acute myeloid leukemia with a t(X;21)(q25–26;q22). Leuk Res. 2006;30:1037–42.

    Article  PubMed  CAS  Google Scholar 

  34. Sashida G, Bazzoli E, Menendez S, Liu Y, Nimer SD. The oncogenic role of the ETS transcription factors MEF and ERG. Cell Cycle. 2010;9:3457. Available from: /pmc/articles/PMC3230474/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lacorazza HD, Miyazaki Y, Di Cristofano A, Deblasio A, Hedvat C, Zhang J, et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity. 2002;17:437–49.

    Article  PubMed  CAS  Google Scholar 

  36. Yamada T, Park CS, Mamonkin M, Lacorazza D. The transcription factor ELF4 controls proliferation and homing of CD8+ T cells via the Krüppel-like factors KLF4 and KLF2. Nat Immunol. 2009;10:618. Available from: /pmc/articles/PMC2774797/

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, et al. ELF4 is critical for induction of type i interferon and the host antiviral response. Nat Immunol. 2013;14:1237–46. Available from:. https://doi.org/10.1038/ni.2756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee P-H, Puppi M, Schluns KS, Yu-Lee L-Y, Dong C, Lacorazza HD. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4 + T cells to the Th17 lineage. J Immunol. 2014;192:178–88.

    Article  PubMed  CAS  Google Scholar 

  39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297. Available from: /pmc/articles/PMC2928508/.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. Available from: /pmc/articles/PMC2938201/.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Crowley E, Warner N, Pan J, Khalouei S, Elkadri A, Fiedler K, et al. Prevalence and clinical features of inflammatory bowel diseases associated with monogenic variants, identified by whole-exome sequencing in 1000 children at a single center. Gastroenterology. 2020;158:2208–20.

    Article  PubMed  CAS  Google Scholar 

  42. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. Available from: https://www.nature.com/articles/s41586-020-2308-7

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med. 2021;13:1–12. Available from: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-021-00835-9

    Article  Google Scholar 

  44. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5. Available from: https://www.nature.com/articles/ng.2892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. De Menthon M, LaValley MP, Maldini C, Guillevin L, Mahr A. HLA–B51/B5 and the risk of Behçet’s disease: A systematic review and meta-analysis of case–control genetic association studies. Arthritis Rheum. 2009;61:1287–96. Available from: /pmc/articles/PMC3867978/

    Article  PubMed  Google Scholar 

  46. Takeno M. The association of Behçet’s syndrome with HLA-B51 as understood in 2021. Curr Opin Rheumatol. 2022;34:4. Available from: /pmc/articles/PMC8635258/

    Article  PubMed  CAS  Google Scholar 

  47. Online Mendelian Inheritance in Man, OMIM®. Baltimore, MD: Johns Hopkins University. MIM Number: 300979: 2022. Available from: https://omim.org/entry/300979.

  48. Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The Classification of Glomerulonephritis in Systemic Lupus Erythematosus Revisited. J Am Soc Nephrol. 2004;15:241–50. Available from: https://journals.lww.com/jasn/Fulltext/2004/02000/The_Classification_of_Glomerulonephritis_in.1.aspx

    Article  PubMed  Google Scholar 

  49. Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, et al. Very early onset inflammatory bowel disease: a clinical approach with a focus on the role of genetics and underlying immune deficiencies. Inflamm Bowel Dis. 2020;26:820. Available from: /pmc/articles/PMC7216773/

    Article  PubMed  Google Scholar 

  50. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 2019;12:1–12. Available from: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-019-0690-2

    Google Scholar 

  51. Li R, Pei H, Watson DK. Regulation of Ets function by protein–protein interactions. Oncogene. 2000;19:6514–23. Available from: https://www.nature.com/articles/1204035

    Article  PubMed  CAS  Google Scholar 

  52. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37. Available from: https://www.nature.com/articles/35099076

    Article  PubMed  CAS  Google Scholar 

  53. Sikora KA, Wells KV, Bolek EC, Jones AI, Grayson PC. Somatic mutations in rheumatological diseases: VEXAS syndrome and beyond. Rheumatology (Oxford). 2022;61:3149. Available from: /pmc/articles/PMC9348615/

    Article  PubMed  CAS  Google Scholar 

  54. Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P, Ospina Cardona D, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021;137:3676–81. Available from: https://ashpublications.org/blood/article/137/26/3676/475476/Novel-somatic-mutations-in-UBA1-as-a-cause-of

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Aluri J, Cooper MA. Genetic mosaicism as a cause of inborn errors of immunity. J Clin Immunol. 2021;41:718–28. https://doi.org/10.1007/s10875-021-01037-z.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kai H, Hisatsune A, Chihara T, Uto A, Kokusho A, Miyata T, et al. Myeloid ELF-1-like factor up-regulates lysozyme transcription in epithelial cells. J Biol Chem. 1999;274:20098–102. Available from: http://www.jbc.org/article/S0021925819726210/fulltext

    Article  PubMed  CAS  Google Scholar 

  57. Lu Z, Kim KA, Suico MA, Shuto T, Li JD, Kai H. MEF up-regulates human β-defensin 2 expression in epithelial cells. FEBS Lett. 2004;561:117–21. https://doi.org/10.1016/S0014-5793(04)00138-3.

    Article  PubMed  CAS  Google Scholar 

  58. Salinas SA, Mace EM, Conte MI, Park CS, Li Y, Rosario-Sepulveda JI, et al. An ELF4 hypomorphic variant results in NK cell deficiency. JCI Insight. 2022;7(23):e155481. https://insight.jci.org/articles/view/155481.

  59. Stewart DM, Tian L, Notarangelo LD, Nelson DL. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: An update. Immunol Res. 2008;40:262–70. https://doi.org/10.1007/s12026-007-0028-9.

    Article  PubMed  CAS  Google Scholar 

  60. Pappa A, Mührer J, Gast P, Hebbar Subramanyam S, Ohl K, Muschaweck M, et al. Pediatric IBD patients show medication and disease activity dependent changes in NK cell and CD4 memory T cell populations. Front Pediatr. 2023;11:1123873. Available from: /pmc/articles/PMC10345343/

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sipponen T, Savilahti E, Kärkkäinen P, Kolho KL, Nuutinen H, Turunen U, et al. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm Bowel Dis. 2008;14:1392–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18484671/

    Article  PubMed  Google Scholar 

  62. Lewis JD. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140:1817–1826.e2. Available from: https://pubmed.ncbi.nlm.nih.gov/21530748/

    Article  PubMed  CAS  Google Scholar 

  63. D’Haens G, Ferrante M, Vermeire S, Baert F, Noman M, Moortgat L, et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2218–24. Available from: https://pubmed.ncbi.nlm.nih.gov/22344983/

    Article  PubMed  Google Scholar 

  64. Aomatsu T, Yoden A, Matsumoto K, Kimura E, Inoue K, Andoh A, et al. Fecal calprotectin is a useful marker for disease activity in pediatric patients with inflammatory bowel disease. Dig Dis Sci. 2011;56:2372–7. https://doi.org/10.1007/s10620-011-1633-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for participation in research and all clinical care staff for their contributions. We acknowledge the Yale Cancer Center for support. Figs. 1A, 1B, and 3 were created with BioRender.com.

Funding

C.L.L. is funded by the Mathers Foundation, Rainin Foundation, NIAID/NIH, and Yale University. A.M.M. is funded by a Canada Research Chair (Tier 1) in Paediatric IBD, Canadian Institute of Health Research (CIHR) Foundation Grant, and NIDDK (RC2DK118640) grant and the Leona M. and Harry B. Helmsley Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

S.J.O. and M.K. performed experiments, analyzed data, and wrote the manuscript. S.K.O. performed CyTOF and analyzed data. M.L.B., D.B.U.K., P.M.T., and F.A. cloned ELF4 variants, performed the luciferase reporter assay, and analyzed data. K.M.J. processed samples. H.S., S.K.O., L.K., and K.F. coordinated clinical samples and data. R.R.M. oversaw experiments by S.K.O. S.A.L., N.W., C.I.vdM., and A.H. oversaw genetic analyses. J.C., H.D., E.P.A.H.H., D.V.D., H.R., C.J.M., P.O., O.N., A.R.M, J.M.L.S., A.M.C.vR., V.A.S.H.D., and A.M.M. provided clinical care and insights with genetic analyses. C.L.L. supervised overall research and data analysis, performed experiments, and wrote/edited the manuscript. All authors discussed and reviewed the manuscript.

Corresponding author

Correspondence to Carrie L. Lucas.

Ethics declarations

Ethics Approval

All human subjects in this study provided informed consent to use their samples for research and to publish de-identified data, in accordance with Helsinki principles for enrollment in research protocols that were approved by the Institutional Review Boards of Yale University, The Hospital for Sick Children, Erasmus University Medical Center, Radboud University Medical Center (regional Arnhem and Nijmegen Medical Ethics Committee), Hospital Universitario Virgen del Rocío, Children’s Hospital of Chongqing Medical University, the Children’s Hospital of Fudan University, Xiangya Hospital Central South University, West China Second University Hospital, and Shenzhen Children’s Hospital. Blood from healthy donors was also obtained under approved protocols. All relevant ethical regulations for work with human participants were followed.

Consent to Participate

All human subjects in this study provided informed consent to participate.

Consent for Publication

All human subjects in this study provided informed consent to publish de-identified data.

Competing Interests

C.L.L. reports an advisory/consulting role for Pharming Healthcare Inc. and unrelated funding support from Ono Pharma. S.A.L. is part owner of Qiyas Higher Health, a startup company unrelated to this work. All other authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sam J. Olyha and Shannon K. O’Connor are co-first authors.

Supplementary Information

ESM 1

(PDF 1.64 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olyha, S.J., O’Connor, S.K., Kribis, M. et al. “Deficiency in ELF4, X-Linked”: a Monogenic Disease Entity Resembling Behçet’s Syndrome and Inflammatory Bowel Disease. J Clin Immunol 44, 44 (2024). https://doi.org/10.1007/s10875-023-01610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01610-8

Keywords

Navigation