Skip to main content

Advertisement

Log in

WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krill CE, Smith HD, Mauer AM. Chronic idiopathic granulocytopenia. N Engl J Med. 1964;270:973–9.

    Article  PubMed  Google Scholar 

  2. Zuelzer WW. “Myelokathexis”--A New Form Of Chronic Granulocytopenia. Report of a case. N Engl J Med. 1964;270:699–704.

    Article  CAS  PubMed  Google Scholar 

  3. McDermott DH, Murphy PM. WHIM syndrome: immunopathogenesis, treatment and cure strategies. Immunol Rev. 2019;287:91–102.

    Article  CAS  PubMed  Google Scholar 

  4. O’Regan S, Newman AJ, Graham RC. “Myelokathexis”. Neutropenia with marrow hyperplasia. Am J Dis Child. 1977;131:655–8.

    Article  PubMed  Google Scholar 

  5. Mentzer WC, Johnston RB, Baehner RL, Nathan DG. An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br J Haematol. 1977;36:313–22.

    Article  PubMed  Google Scholar 

  6. Bohinjec J. Myelokathexis: chronic neutropenia with hyperplastic bone marrow and hypersegmented neutrophils in two siblings. Blut. 1981;42:191–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bassan R, Viero P, Minetti B, Comotti B, Barbui T. Myelokathexis: a rare form of chronic benign granulocytopenia. Br J Haematol. 1984;58:115–7.

    Article  CAS  PubMed  Google Scholar 

  8. Plebani A, Cantù-Rajnoldi A, Collo G, Allavena P, Biolchini A, Pirelli A, et al. Myelokathexis associated with multiple congenital malformations: immunological study on phagocytic cells and lymphocytes. Eur J Haematol. 1988;40:12–7.

    Article  CAS  PubMed  Google Scholar 

  9. Rassam SM, Roderick P, al-Hakim I, Hoffbrand AV. A myelokathexis-like variant of myelodysplasia. Eur J Haematol. 1989;42:99–102.

    Article  CAS  PubMed  Google Scholar 

  10. Wetzler M, Talpaz M, Kleinerman ES, King A, Huh YO, Gutterman JU, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89:663–72.

    Article  CAS  PubMed  Google Scholar 

  11. Ganser A, Ottmann OG, Erdmann H, Schulz G, Hoelzer D. The effect of recombinant human granulocyte-macrophage colony-stimulating factor on neutropenia and related morbidity in chronic severe neutropenia. Ann Intern Med. 1989;111:887–92.

    Article  CAS  PubMed  Google Scholar 

  12. Ohtake M, Kobayashi M, Watanabe N, Nagai Y, Kato S, Ikuo K, et al. A clinical report of the first case of myelokathexis in Japan. J Jpn Pediatr Soc. 1988;92:160–5.

    Google Scholar 

  13. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4.

    Article  CAS  PubMed  Google Scholar 

  14. Herzog H, Hort YJ, Shine J, Selbie LA. Molecular cloning, characterization, and localization of the human homolog to the reported bovine NPY Y3 receptor: lack of NPY binding and activation. DNA Cell Biol. 1993;12:465–71.

    Article  CAS  PubMed  Google Scholar 

  15. Federsppiel B, Melhado IG, Duncan AM, Delaney A, Schappert K, Clark-Lewis I, et al. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics. 1993;16:707–12.

    Article  CAS  PubMed  Google Scholar 

  16. Jazin EE, Yoo H, Blomqvist AG, Yee F, Weng G, Walker MW, et al. A proposed bovine neuropeptide Y (NPY) receptor cDNA clone, or its human homologue, confers neither NPY binding sites nor NPY responsiveness on transfected cells. Regul Pept. 1993;47:247–58.

    Article  CAS  PubMed  Google Scholar 

  17. Nomura H, Nielsen BW, Matsushima K. Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors. Int Immunol. 1993;5:1239–49.

    Article  CAS  PubMed  Google Scholar 

  18. Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem. 1994;269:232–7.

    CAS  PubMed  Google Scholar 

  19. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–7.

    Article  CAS  PubMed  Google Scholar 

  20. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657–700.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Huang Y, He T, Cao Y, Ho DD. HIV-1 subtype and second-receptor use. Nature. 1996;383:768.

    Article  CAS  PubMed  Google Scholar 

  22. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp Med. 1997;185:621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Björndal A, Deng H, Jansson M, Fiore JR, Colognesi C, Karlsson A, et al. Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J Virol. 1997;71:7478–87.

    PubMed  PubMed Central  Google Scholar 

  24. Scarlatti G, Tresoldi E, Björndal A, Fredriksson R, Colognesi C, Deng HK, et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med. 1997;3:1259–65.

    Article  CAS  PubMed  Google Scholar 

  25. Bazan HA, Alkhatib G, Broder CC, Berger EA. Patterns of CCR5, CXCR4, and CCR3 usage by envelope glycoproteins from human immunodeficiency virus type 1 primary isolates. J Virol. 1998;72:4485–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier J-L, Arenzana-Seisdedos F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833–5.

    Article  CAS  PubMed  Google Scholar 

  27. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996;382:829–33.

    Article  CAS  PubMed  Google Scholar 

  28. Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261:600–3.

    Article  CAS  PubMed  Google Scholar 

  29. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–8.

    Article  CAS  PubMed  Google Scholar 

  30. Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao J-L, et al. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs. 2017;5:813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL, Michael NL. Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem. 1998;273:4754–60.

    Article  CAS  PubMed  Google Scholar 

  32. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yang S, Edman LC, Sanchez-Alcaniz JA, Fritz N, Bonilla S, Hecht J, et al. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development. 2013;140:4554–64.

    Article  CAS  PubMed  Google Scholar 

  34. Abe P, Mueller W, Schütz D, MacKay F, Thelen M, Zhang P, et al. CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons. Development. 2014;141:1857–63.

    Article  CAS  PubMed  Google Scholar 

  35. Ivins S, Chappell J, Vernay B, Suntharalingham J, Martineau A, Mohun TJ, et al. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev Cell. 2015;33:455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, et al. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell. 2002;111:647–59.

    Article  CAS  PubMed  Google Scholar 

  37. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35:816–26.

    Article  CAS  PubMed  Google Scholar 

  38. Burger JA. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget[Internet]. 2015 [cited 2019 Feb 25];6:(7):5022-40. Available from: http://www.oncotarget.com/fulltext/3217

  40. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    Article  PubMed  Google Scholar 

  41. Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine. 2018;109:2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018;44:51–68.

    Article  CAS  PubMed  Google Scholar 

  43. Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich P-S, Daltroff G, Plantier I, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dotta L, Notarangelo LD, Moratto D, Kumar R, Porta F, Soresina A, et al. Long term outcome of WHIM syndrome in 18 patients: high risk of lung disease and HPV-related malignancies. J Allergy Clin Immunol Pract. 2019;7(5):1568–77.

    Article  PubMed  Google Scholar 

  45. Al Ustwani O, Kurzrock R, Wetzler M. Genetics on a WHIM. Br J Haematol. 2014;164:15–23.

    Article  CAS  PubMed  Google Scholar 

  46. Majumdar S, Murphy P. Adaptive immunodeficiency in WHIM syndrome. Int J Mol Sci. 2018;20:3.

    Article  CAS  PubMed Central  Google Scholar 

  47. Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16:20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gulino AV. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104:444–52.

    Article  CAS  PubMed  Google Scholar 

  49. McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O’Brien S, Ulrick J, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123:2308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tassone L, Notarangelo LD, Bonomi V, Savoldi G, Sensi A, Soresina A, et al. Clinical and genetic diagnosis of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome in 10 patients. J Allergy Clin Immunol. 2009;123:1170–1173.e3.

    Article  PubMed  Google Scholar 

  51. Latger-Cannard V, Bensoussan D, Bordigoni P. The WHIM syndrome shows a peculiar dysgranulopoiesis: myelokathexis. Br J Haematol. 2006;132:669.

    Article  PubMed  Google Scholar 

  52. Palm MD, Tyring SK, Rady PL, Tharp MD. Human papillomavirus typing of verrucae in a patient with WHIM syndrome. Arch Dermatol. 2010;146:931–2.

    Article  PubMed  Google Scholar 

  53. McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O’Brien S, Penzak SR, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011;118:4957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McDermott DH. Warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Stiehm’s Immune Deficiencies [Internet]. Elsevier; 2014 [cited 2019 Feb 18]. p. 711–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780124055469000352

  55. Badolato R, Dotta L, Tassone L, Amendola G, Porta F, Locatelli F, et al. Tetralogy of Fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr. 2012;161:763–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taniuchi S, Yamamoto A, Fujiwara T, Hasui M, Tsuji S, Kobayashi Y. Dizygotic twin sisters with myelokathexis: mechanism of its neutropenia. Am J Hematol. 1999;62:106–11.

    Article  CAS  PubMed  Google Scholar 

  57. Badolato R, Donadieu J. The WHIM research group. How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood. 2017;130:2491–8.

    Article  CAS  PubMed  Google Scholar 

  58. McDermott DH, Gao J-L, Liu Q, Siwicki M, Martens C, Jacobs P, et al. Chromothriptic cure of WHIM syndrome. Cell. 2015;160:686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McDermott DH, Gao J-L, Murphy PM. Chromothriptic cure of WHIM syndrome: implications for bone marrow transplantation. Rare Diseases. 2015;3:e1073430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao J-L, Yim E, Siwicki M, Yang A, Liu Q, Azani A, et al. Cxcr4-haploinsufficient bone marrow transplantation corrects leukopenia in an unconditioned WHIM syndrome model. J Clin Investig. 2018;128:3312–8.

    Article  PubMed  Google Scholar 

  61. Liu Q, Li Z, Y Yang A, Gao J-L, S Velez D, J Cho E, et al. Mechanisms of sustained neutrophilia in patient WHIM-09, cured of WHIM syndrome by chromothripsis. J Clin Immunol. 2018;38:77–87.

    Article  CAS  PubMed  Google Scholar 

  62. Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. Severe congenital neutropenias. Nat Rev Dis Primers. 2017;3:17032.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, et al. The severe chronic neutropenia international registry: 10-year follow-up report. Support Cancer Ther. 2006;3:220–31.

    Article  PubMed  Google Scholar 

  64. Sicre de Fontbrune F, Moignet A, Beaupain B, Suarez F, Galicier L, Socié G, et al. Severe chronic primary neutropenia in adults: report on a series of 108 patients. Blood. 2015;126:1643–50.

    Article  CAS  PubMed  Google Scholar 

  65. Aminu M, Gwafan JZ, Oguntayo OA, Ella EE, Koledade AK, Inabo IH. Seroprevalence of human papillomavirus immunoglobulin G antibodies among women presenting at the reproductive health clinic of a university teaching hospital in Nigeria. Int J Women's Health. 2014;6:479–87.

    Article  CAS  Google Scholar 

  66. Goddard EA, Hughes EJ, Beatty DW. A case of immunodeficiency characterized by neutropenia, hypogammaglobulinaemia, recurrent infections and warts. Clin Lab Haematol. 1994;16:297–302.

    Article  CAS  PubMed  Google Scholar 

  67. Gorlin RJ, Gelb B, Diaz GA, Lofsness KG, Pittelkow MR, Fenyk JR. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet. 2000;91:368–76.

    Article  CAS  PubMed  Google Scholar 

  68. Auer PL, Teumer A, Schick U, O’Shaughnessy A, Lo KS, Chami N, et al. Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet. 2014;46:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest. 2010;120:2423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin C, Burdon PCE, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19:583–93.

    Article  CAS  PubMed  Google Scholar 

  71. Hoggatt J, Singh P, Tate TA, Chou B-K, Datari SR, Fukuda S, et al. Rapid mobilization reveals a highly engraftable hematopoietic stem cell. Cell. 2018;172:191–204.e10.

    Article  CAS  PubMed  Google Scholar 

  72. Liu Q, Chen H, Ojode T, Gao X, Anaya-O’Brien S, Turner NA, et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood. 2012;120:181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balabanian K. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105:2449–57.

    Article  CAS  PubMed  Google Scholar 

  74. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.

    Article  CAS  PubMed  Google Scholar 

  75. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.

    Article  CAS  PubMed  Google Scholar 

  76. Valentin G, Haas P, Gilmour D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. 2007;17:1026–31.

    Article  CAS  PubMed  Google Scholar 

  77. Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes H-G, et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One. 2010;5:e9175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A. 2007;104:15735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R, et al. New nomenclature for atypical chemokine receptors. Nat Immunol. 2014;15:207–8.

    Article  CAS  PubMed  Google Scholar 

  80. Balabanian K, Lagane B, Infantino S, Chow KYC, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280:35760–6.

    Article  CAS  PubMed  Google Scholar 

  81. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci. 1998;95:9448–53.

    Article  CAS  PubMed  Google Scholar 

  82. Gerrits H, van Ingen Schenau DS, Bakker NEC, van Disseldorp AJM, Strik A, Hermens LS, et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. genesis. 2008;46:235–45.

    Article  CAS  PubMed  Google Scholar 

  83. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M, et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci. 2007;104:14759–64.

    Article  CAS  PubMed  Google Scholar 

  84. Uzzan M, Ko HM, Mehandru S, Cunningham-Rundles C. Gastrointestinal disorders associated with common variable immune deficiency (CVID) and chronic granulomatous disease (CGD). Curr Gastroenterol Rep. 2016;18:17.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Alimchandani M, Lai J-P, Aung PP, Khangura S, Kamal N, Gallin JI, et al. Gastrointestinal histopathology in chronic granulomatous disease: a study of 87 patients. Am J Surg Pathol. 2013;37:1365–72.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pastrana DV, Peretti A, Welch NL, Borgogna C, Olivero C, Badolato R, et al. Metagenomic discovery of 83 new human papillomavirus types in patients with immunodeficiency. Imperiale MJ, editors. Clinical Science and Epidemiology 2018;3:1–14. https://doi.org/10.1128/mSphereDirect.00645-18.

  87. McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D, Cho E, et al. Plerixafor for the treatment of WHIM syndrome. N Engl J Med. 2019;380:163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tarzi MD, Jenner M, Hattotuwa K, Faruqi AZ, Diaz GA, Longhurst HJ. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. J Allergy Clin Immunol. 2005;116:1101–5.

    Article  PubMed  Google Scholar 

  89. Beynon DWG, Lopes A, Daras B, Monaghan JM. Radical vulvectomy and groin node dissection in a patient with chronic neutropenia-maintenance of leucocyte count using granulocyte colony-stimulating factor. Int J Gynecol Cancer. 1993;3:405–7.

    Article  PubMed  Google Scholar 

  90. Leiding JW, Holland SM. Warts and all: human papillomavirus in primary immunodeficiencies. J Allergy Clin Immunol. 2012;130:1030–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sri JC, Dubina MI, Kao GF, Rady PL, Tyring SK, Gaspari AA. Generalized verrucosis: a review of the associated diseases, evaluation, and treatments. J Am Acad Dermatol. 2012;66:292–311.

    Article  PubMed  Google Scholar 

  92. Imashuku S, Miyagawa A, Chiyonobu T, Ishida H, Yoshihara T, Teramura T, et al. Epstein-Barr virus-associated T-lymphoproliferative disease with hemophagocytic syndrome, followed by fatal intestinal B lymphoma in a young adult female with WHIM syndrome. Ann Hematol. 2002;81:470–3.

    Article  CAS  PubMed  Google Scholar 

  93. Yoshii Y, Kato T, Ono K, Takahashi E, Fujimoto N, Kobayashi S, et al. Primary cutaneous follicle center lymphoma in a patient with WHIM syndrome. J Eur Acad Dermatol Venereol. 2016;30:529–30.

    Article  CAS  PubMed  Google Scholar 

  94. Chae KM, Ertle JO, Tharp MD. B-cell lymphoma in a patient with WHIM syndrome. J Am Acad Dermatol. 2001;44:124–8.

    Article  CAS  PubMed  Google Scholar 

  95. Momma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol. 2010;105:1617–24.

    Article  CAS  PubMed  Google Scholar 

  96. Kobayashi D, Sallaam S, Humes RA. Tetralogy of Fallot with complete DiGeorge syndrome: report of a case and a review of the literature. Congenit Heart Dis. 2013;8:E119–26.

    Article  PubMed  Google Scholar 

  97. Balabanian K, Brotin E, Biajoux V, Bouchet-Delbos L, Lainey E, Fenneteau O, et al. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood. 2012;119:5722–30.

    Article  CAS  PubMed  Google Scholar 

  98. Galli J, Pinelli L, Micheletti S, Palumbo G, Notarangelo LD, Lougaris V, et al. Cerebellar involvement in warts hypogammaglobulinemia immunodeficiency myelokathexis patients: neuroimaging and clinical findings. Orphanet J Rare Dis. 2019;14:61.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Takaya J, Fujii Y, Higashino H, Taniuchi S, Nakamura M, Kaneko K. A case of WHIM syndrome associated with diabetes and hypothyroidism. Pediatr Diab. 2009;10:484–6.

    Article  Google Scholar 

  100. Aprikyan AA, Liles WC, Park JR, Jonas M, Chi EY, Dale DC. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood. 2000;95:320–7.

    CAS  PubMed  Google Scholar 

  101. Siedlar M, Rudzki Z, Strach M, Trzyna E, Pituch-Noworolska A, Błaut-Szlósarczyk A, et al. Familial occurrence of warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. Arch Immunol Ther Exp. 2008;56:419–25.

    Article  CAS  Google Scholar 

  102. Aghamohammadi A, Abolhassani H, Puchalka J, Greif-Kohistani N, Zoghi S, Klein C, et al. Preference of genetic diagnosis of CXCR4 mutation compared with clinical diagnosis of WHIM syndrome. J Clin Immunol. 2017;37:282–6.

    Article  CAS  PubMed  Google Scholar 

  103. Banka S, Newman WG. A clinical and molecular review of ubiquitous glucose-6-phosphatase deficiency caused by G6PC3 mutations. Orphanet J Rare Dis. 2013;8:84.

    Article  PubMed  PubMed Central  Google Scholar 

  104. McDermott DH, De Ravin SS, Jun HS, Liu Q, Priel DAL, Noel P, et al. Severe congenital neutropenia resulting from G6PC3 deficiency with increased neutrophil CXCR4 expression and myelokathexis. Blood. 2010;116:2793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boztug K, Appaswamy G, Ashikov A, Schäffer AA, Salzer U, Diestelhorst J, et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med. 2009;360:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kolehmainen J, Black GCM, Saarinen A, Chandler K, Clayton-Smith J, Träskelin A-L, et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet. 2003;72:1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shearman JR, Wilton AN. A canine model of Cohen syndrome: trapped neutrophil syndrome. BMC Genomics. 2011;12:258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kivitie-Kallio S, Rajantie J, Juvonen E, Norio R. Granulocytopenia in Cohen syndrome. Br J Haematol. 1997;98:308–11.

    Article  CAS  PubMed  Google Scholar 

  109. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330:1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Handel TM. The structure of a CXCR4:chemokine complex. Front Immunol [Internet]. 2015 [cited 2019 Feb 19];6. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00282/abstract

  111. Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, et al. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci. 2016;113:9928–33.

    Article  CAS  PubMed  Google Scholar 

  112. Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, et al. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci. 2014;111:E5363–72.

    Article  CAS  PubMed  Google Scholar 

  113. Ziarek JJ, Getschman AE, Butler SJ, Taleski D, Stephens B, Kufareva I, et al. Sulfopeptide probes of the CXCR4/CXCL12 Interface reveal oligomer-specific contacts and chemokine allostery. ACS Chem Biol. 2013;8:1955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, et al. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science. 2015;347:1117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta. 2007;1768:952–63.

    Article  CAS  PubMed  Google Scholar 

  116. Futahashi Y, Komano J, Urano E, Aoki T, Hamatake M, Miyauchi K, et al. Separate elements are required for ligand-dependent and -independent internalization of metastatic potentiator CXCR4. Cancer Sci. 2007;98:373–9.

    Article  CAS  PubMed  Google Scholar 

  117. Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B, et al. Beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Biol Chem. 2000;275:2479–85.

    Article  CAS  PubMed  Google Scholar 

  118. Balabanian K, Levoye A, Klemm L, Lagane B, Hermine O, Harriague J, et al. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. Journal of Clinical Investigation [Internet]. 2008 [cited 2018 Nov 7]; Available from: http://www.jci.org/articles/view/33187

  119. McDermott DH, Lopez J, Deng F, Liu Q, Ojode T, Chen H, et al. AMD3100 is a potent antagonist at CXCR4R334X, a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med. 2011;15:2071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu Q, Pan C, Lopez L, Gao J, Velez D, Anaya-O’Brien S, et al. WHIM syndrome caused by Waldenström’s macroglobulinemia-associated mutation CXCR4 L329fs. J Clin Immunol. 2016;36:397–405.

    Article  CAS  PubMed  Google Scholar 

  121. Mueller W, Schütz D, Nagel F, Schulz S, Stumm R. Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. Klein R, editor. PLoS One. 2013;8:e64975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lagane B, Chow KYC, Balabanian K, Levoye A, Harriague J, Planchenault T, et al. CXCR4 dimerization and -arrestin-mediated signaling account for the enhanced chemotaxis to CXCL12 in WHIM syndrome. Blood. 2008;112:34–44.

    Article  CAS  PubMed  Google Scholar 

  123. Martínez-Muñoz L, Rodríguez-Frade JM, Barroso R, Sorzano CÓS, Torreño-Pina JA, Santiago CA, et al. Separating actin-dependent chemokine receptor nanoclustering from dimerization indicates a role for clustering in CXCR4 signaling and function. Mol Cell. 2018;70:106–19 e10.

    Article  CAS  PubMed  Google Scholar 

  124. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    Article  CAS  PubMed  Google Scholar 

  125. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95:3289–96.

    CAS  PubMed  Google Scholar 

  126. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest. 1999;104:1199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845–8.

    Article  CAS  PubMed  Google Scholar 

  128. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    Article  CAS  PubMed  Google Scholar 

  129. Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 2010;116:2803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kawai T, Choi U, Whiting-Theobald NL, Linton GF, Brenner S, Sechler JMG, et al. Enhanced function with decreased internalization of carboxy-terminus truncated CXCR4 responsible for WHIM syndrome. Exp Hematol. 2005;33:460–8.

    Article  CAS  PubMed  Google Scholar 

  131. Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 2002;527:255–62.

    Article  CAS  PubMed  Google Scholar 

  132. Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR, et al. Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol. 2006;72:588–96.

    Article  CAS  PubMed  Google Scholar 

  133. Liu Q, Li Z, Gao J-L, Wan W, Ganesan S, McDermott DH, et al. CXCR4 antagonist AMD3100 redistributes leukocytes from primary immune organs to secondary immune organs, lung, and blood in mice: leukocyte signaling. Eur J Immunol. 2015;45:1855–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Devi S, Wang Y, Chew WK, Lima R, A-González N, Mattar CNZ, et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J Exp Med. 2013;210:2321–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Investig. 2018;48(Suppl 2):e12949.

    Article  CAS  Google Scholar 

  136. Sanmun D, Garwicz D, Smith CIE, Palmblad J, Fadeel B. Stromal-derived factor-1 abolishes constitutive apoptosis of WHIM syndrome neutrophils harbouring a truncating CXCR4 mutation. Br J Haematol. 2006;134:640–4.

    Article  PubMed  Google Scholar 

  137. Rankin SM. The bone marrow: a site of neutrophil clearance. J Leukoc Biol. 2010;88:241–51.

    Article  CAS  PubMed  Google Scholar 

  138. Weisel KC, Bautz F, Seitz G, Yildirim S, Kanz L, Möhle R. Modulation of CXC chemokine receptor expression and function in human neutrophils during aging in vitro suggests a role in their clearance from circulation. Mediat Inflamm. 2009;2009:790174.

    Article  CAS  Google Scholar 

  139. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    Article  CAS  PubMed  Google Scholar 

  140. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425:307–11.

    Article  CAS  PubMed  Google Scholar 

  141. Walmsley SR, Cadwallader KA, Chilvers ER. The role of HIF-1alpha in myeloid cell inflammation. Trends Immunol. 2005;26:434–9.

    Article  CAS  PubMed  Google Scholar 

  142. Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, Weiss LA, et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity. 2019;50:390–402 e10.

    Article  CAS  PubMed  Google Scholar 

  143. Smith E, Zarbock A, Stark MA, Burcin TL, Bruce AC, Foley P, et al. IL-23 is required for neutrophil homeostasis in normal and neutrophilic mice. J Immunol. 2007;179:8274–9.

    Article  CAS  PubMed  Google Scholar 

  144. Boxer LA. How to approach neutropenia. Hematol Am Soc Hematol Educ Program. 2012;2012:174–82.

    Google Scholar 

  145. Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T. CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood. 2011;117:451–8.

    Article  CAS  PubMed  Google Scholar 

  146. Mayol K, Biajoux V, Marvel J, Balabanian K, Walzer T. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood. 2011;118:4863–71.

    Article  CAS  PubMed  Google Scholar 

  147. Mc Guire PJ, Cunningham-Rundles C, Ochs H, Diaz GA. Oligoclonality, impaired class switch and B-cell memory responses in WHIM syndrome. Clin Immunol. 2010;135:412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kean LS, Sen S, Onabajo O, Singh K, Robertson J, Stempora L, et al. Significant mobilization of both conventional and regulatory T cells with AMD3100. Blood. 2011;118:6580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jaeger BN, Donadieu J, Cognet C, Bernat C, Ordoñez-Rueda D, Barlogis V, et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med. 2012;209:565–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Alapi K, Erdos M, Kovács G, Maródi L. Recurrent CXCR4 sequence variation in a girl with WHIM syndrome. Eur J Haematol. 2007;78:86–8.

    Article  CAS  PubMed  Google Scholar 

  151. Moens L, Frans G, Bosch B, Bossuyt X, Verbinnen B, Poppe W, et al. Successful hematopoietic stem cell transplantation for myelofibrosis in an adult with warts-hypogammaglobulinemia-immunodeficiency-myelokathexis syndrome. J Allergy Clin Immunol. 2016;138:1485–1489.e2.

    Article  PubMed  Google Scholar 

  152. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91:2305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Beck TC, Gomes AC, Cyster JG, Pereira JP. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med. 2014;211:2567–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Murphy PM, McDermott DH. Unexpected developments in immune organs in WHIM syndrome. Blood. 2012;119:5610–2.

    Article  CAS  PubMed  Google Scholar 

  155. Dale DC, Bolyard AA, Kelley ML, Westrup EC, Makaryan V, Aprikyan A, et al. The CXCR4 antagonist plerixafor is a potential therapy for myelokathexis, WHIM syndrome. Blood. 2011;118:4963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Freitas C, Wittner M, Nguyen J, Rondeau V, Biajoux V, Aknin M-L, et al. Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization. J Exp Med. 2017;214:2023–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nie Y, Waite J, Brewer F, Sunshine M-J, Littman DR, Zou Y-R. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med. 2004;200:1145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shin DW, Park SN, Kim S-M, Im K, Kim J-A, Hong KT, et al. WHIM syndrome with a novel CXCR4 variant in a Korean child. Ann Lab Med. 2017;37:446.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Handisurya A, Schellenbacher C, Reininger B, Koszik F, Vyhnanek P, Heitger A, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28:4837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol. 2004;5:943–52.

    Article  CAS  PubMed  Google Scholar 

  161. Roselli G, Martini E, Lougaris V, Badolato R, Viola A, Kallikourdis M. CXCL12 mediates aberrant costimulation of B lymphocytes in warts, hypogammaglobulinemia, infections, myelokathexis immunodeficiency. Frontiers in Immunology [Internet]. 2017 [cited 2018 Oct 9];8. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2017.01068/full

  162. Biajoux V, Natt J, Freitas C, Alouche N, Sacquin A, Hemon P, et al. Efficient plasma cell differentiation and trafficking require Cxcr4 desensitization. Cell Rep. 2016;17:193–205.

    Article  CAS  PubMed  Google Scholar 

  163. Becker M, Hobeika E, Jumaa H, Reth M, Maity PC. CXCR4 signaling and function require the expression of the IgD-class B-cell antigen receptor. Proc Natl Acad Sci. 2017;114:5231–6.

    Article  CAS  PubMed  Google Scholar 

  164. Gulino AV. WHIM syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol. 2003;3:443–50.

    Article  CAS  PubMed  Google Scholar 

  165. Saettini F, Notarangelo LD, Biondi A, Bonanomi S. Neutropenia, hypogammaglobulinemia, and pneumonia: a case of WHIM syndrome. Pediatr Int. 2018;60:318–9.

    Article  PubMed  Google Scholar 

  166. Lundqvist A, Smith AL, Takahashi Y, Wong S, Bahceci E, Cook L, et al. Differences in the phenotype, cytokine gene expression profiles, and in vivo alloreactivity of T cells mobilized with plerixafor compared with G-CSF. J Immunol. 2013;191:6241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Calderon L, Boehm T. Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc Natl Acad Sci. 2011;108:7517–22.

    Article  PubMed  Google Scholar 

  168. Robertson P, Means TK, Luster AD, Scadden DT. CXCR4 and CCR5 mediate homing of primitive bone marrow–derived hematopoietic cells to the postnatal thymus. Exp Hematol. 2006;34:308–19.

    Article  CAS  PubMed  Google Scholar 

  169. Plotkin J, Prockop SE, Lepique A, Petrie HT. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol. 2003;171:4521–7.

    Article  CAS  PubMed  Google Scholar 

  170. Trampont PC, Tosello-Trampont A-C, Shen Y, Duley AK, Sutherland AE, Bender TP, et al. CXCR4 acts as a costimulator during thymic β-selection. Nat Immunol. 2010;11:162–70.

    Article  CAS  PubMed  Google Scholar 

  171. Janas ML, Varano G, Gudmundsson K, Noda M, Nagasawa T, Turner M. Thymic development beyond β-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med. 2010;207:247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol. 2003;170:4649–55.

    Article  CAS  PubMed  Google Scholar 

  173. Hernandezlopez C, Valencia J, Hidalgo L, Martinez V, Zapata A, Sacedon R, et al. CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett. 2008;120:72–8.

    Article  CAS  Google Scholar 

  174. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, et al. CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity. 2006;25:213–24.

    Article  CAS  PubMed  Google Scholar 

  175. Smith X, Schneider H, Köhler K, Liu H, Lu Y, Rudd CE. The chemokine CXCL12 generates costimulatory signals in T cells to enhance phosphorylation and clustering of the adaptor protein SLP-76. Sci Signal. 2013;6:ra65.

    Article  CAS  PubMed  Google Scholar 

  176. Molon B, Gri G, Bettella M, Gómez-Moutón C, Lanzavecchia A, Martínez AC, et al. T cell costimulation by chemokine receptors. Nat Immunol. 2005;6:465–71.

    Article  CAS  PubMed  Google Scholar 

  177. Nanki T, Lipsky PE. Cutting edge: stromal cell-derived Factor-1 is a costimulator for CD4+ T cell activation. J Immunol. 2000;164:5010–4.

    Article  CAS  PubMed  Google Scholar 

  178. Kallikourdis M, Trovato AE, Anselmi F, Sarukhan A, Roselli G, Tassone L, et al. The CXCR4 mutations in WHIM syndrome impair the stability of the T-cell immunologic synapse. Blood. 2013;122:666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chaix J, Nish SA, Lin W-HW, Rothman NJ, Ding L, Wherry EJ, et al. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. J Immunol. 2014;193:1013–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Meuris F, Carthagena L, Jaracz-Ros A, Gaudin F, Cutolo P, Deback C, et al. The CXCL12/CXCR4 signaling pathway: A new susceptibility factor in human papillomavirus pathogenesis. PLoS Pathog. 2016;12:e1006039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chow KYC, Brotin É, Ben Khalifa Y, Carthagena L, Teissier S, Danckaert A, et al. A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes: clues to understanding HPV-pathogenesis in WHIM syndrome. Cell Host Microbe. 2010;8:523–33.

    Article  CAS  PubMed  Google Scholar 

  182. Bollag WB, Hill WD. CXCR4 in epidermal keratinocytes: crosstalk within the skin. J Invest Dermatol. 2013;133:2505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231:21–33.

    Article  CAS  PubMed  Google Scholar 

  184. Komdeur FL, Prins TM, van de Wall S, Plat A, Wisman GBA, Hollema H, et al. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. Oncoimmunology. 2017;6:e1338230.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kim TJ, Jin H-T, Hur S-Y, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nature Communications [Internet]. 2014 [cited 2018 Oct 25];5. Available from: http://www.nature.com/articles/ncomms6317

  186. Diniz MO, Sales NS, Silva JR, Ferreira LCS. Protection against HPV-16-associated tumors requires the activation of CD8+ effector memory T cells and the control of myeloid-derived suppressor cells. Mol Cancer Ther. 2016;15:1920–30.

    Article  CAS  PubMed  Google Scholar 

  187. Meuris F, Gaudin F, Aknin M-L, Hémon P, Berrebi D, Bachelerie F. Symptomatic improvement in human papillomavirus-induced epithelial neoplasia by specific targeting of the CXCR4 chemokine receptor. J Investig Dermatol. 2016;136:473–80.

    Article  CAS  PubMed  Google Scholar 

  188. Bontkes HJ, Ruizendaal JJ, Kramer D, Meijer CJLM, Hooijberg E. Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles. Gynecol Oncol. 2005;96:897–901.

    Article  PubMed  Google Scholar 

  189. Tassone L, Moratto D, Vermi W, De Francesco M, Notarangelo LD, Porta F, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood. 2010;116:4870–3.

    Article  CAS  PubMed  Google Scholar 

  190. Weston B, Axtell RA, Todd RF, Vincent M, Balazovich KJ, Suchard SJ, et al. Clinical and biologic effects of granulocyte colony stimulating factor in the treatment of myelokathexis. J Pediatr. 1991;118:229–34.

    Article  CAS  PubMed  Google Scholar 

  191. Dale D, Bolyard AA, Dick E, Kelley ML, Makaryan V, Johnson R, et al. X4P-001: a novel molecularly-targeted oral therapy for Whim syndrome. Blood. 2017;130:995.

    Article  CAS  Google Scholar 

  192. De Clercq E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem Pharmacol. 2009;77:1655–64.

    Article  CAS  PubMed  Google Scholar 

  193. De Clercq E. AMD3100/CXCR4 inhibitor. Front Immunol [Internet]. 2015 [cited 2018 Sep 19];6. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00276/abstract

  194. De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov. 2003;2:581–7.

    Article  CAS  PubMed  Google Scholar 

  195. Hendrix CW, Collier AC, Lederman MM, Schols D, Pollard RB, Brown S, et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr. 2004;37:1253–62.

    Article  CAS  PubMed  Google Scholar 

  196. Liu T, Li X, You S, Bhuyan SS, Dong L. Effectiveness of AMD3100 in treatment of leukemia and solid tumors: from original discovery to use in current clinical practice. Exp Hematol Oncol [Internet]. 2015 [cited 2018 Oct 11];5. Available from: http://ehoonline.biomedcentral.com/articles/10.1186/s40164-016-0050-5

  197. Gayatri S, Nabil H, Bita J, Sharon F, Loretta P, Fengshuo L, et al. A phase II, open-label pilot study to evaluate the hematopoietic stem cell mobilization of TG-0054 combined with G-CSF in 12 patients with multiple myeloma, non-Hodgkin lymphoma or Hodgkin lymphoma - an interim analysis. Blood. 126:515.

  198. Vater A, Sahlmann J, Kröger N, Zöllner S, Lioznov M, Maasch C, et al. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin Pharmacol Ther. 2013;94:150–7.

    Article  CAS  PubMed  Google Scholar 

  199. Hachet-Haas M, Balabanian K, Rohmer F, Pons F, Franchet C, Lecat S, et al. Small neutralizing molecules to inhibit actions of the chemokine CXCL12. J Biol Chem. 2008;283:23189–99.

    Article  CAS  PubMed  Google Scholar 

  200. de Wit RH, Heukers R, Brink HJ, Arsova A, Maussang D, Cutolo P, et al. CXCR4-specific nanobodies as potential therapeutics for WHIM syndrome. J Pharmacol Exp Ther. 2017;363:35–44.

    Article  CAS  PubMed  Google Scholar 

  201. Kawahara Y, Oh Y, Kato T, Zaha K, Morimoto A. Transient marked increase of γδ T cells in WHIM syndrome after successful HSCT. J Clin Immunol. 2018;38:553–5.

    Article  PubMed  Google Scholar 

  202. Kriván G, Erdős M, Kállay K, Benyó G, Tóth Á, Sinkó J, et al. Successful umbilical cord blood stem cell transplantation in a child with WHIM syndrome. Eur J Haematol. 2010;84:274–5.

    Article  CAS  PubMed  Google Scholar 

  203. Bhar S, Yassine K, Martinez C, Sasa GS, Naik S, Jr DM, et al. Allogeneic stem cell transplantation in a pediatric patient with Whim syndrome. Blood. 126:5528.

Download references

Acknowledgments

This work was supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Murphy.

Ethics declarations

Conflict of Interest

PMM is a member of the Scientific Advisory Board of X4-Pharma. PMM, J-LG, and DHM are listed as inventors on a patent application disclosing a method of enhancing hematopoietic stem cell engraftment by CXCR4 knockdown. There are no other stated conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

ESM 2

(DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heusinkveld, L.E., Majumdar, S., Gao, JL. et al. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 39, 532–556 (2019). https://doi.org/10.1007/s10875-019-00665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-019-00665-w

Keywords

Navigation