Skip to main content

Advertisement

Log in

Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency.

Key Points

• Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state.

• CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands.

• Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein).

• The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity.

• The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis.

• The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned.

• Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease.

• All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed.

• The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glocker E-O, Hennigs A, Nabavi M, Schäffer A, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lanternier F, Pathan S, Vincent QBQB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lanternier F, Mahdaviani S, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with meningo-encephalitis and/or colitis caused by Candida. J Allergy Clin Immunol. 2015;135(6):1558–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SMUU, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–90.

    Article  PubMed  CAS  Google Scholar 

  5. Herbst M, Gazendam R, Reimnitz D, Sawalle-Belohradsky J, Groll A, Schlegel P-GG, et al. Chronic Candida albicans meningitis in a 4-year-old girl with a homozygous mutation in the CARD9 gene (Q295X). Pediatr Infect Dis J. 2015;34:999–1002.

    Article  PubMed  Google Scholar 

  6. Gavino C, Hamel N, Zeng B, Legault C, Guiot M, Chankowsky J, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2015;137(4):1178–88.

    Article  PubMed  CAS  Google Scholar 

  7. Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11:1–32.

    Article  CAS  Google Scholar 

  8. Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1:1–13.

    Article  Google Scholar 

  9. Celmeli F, Oztoprak N, Turkkahraman D, Seyman D, Mutlu E, Frede N, et al. Successful granulocyte colony-stimulating factor treatment of relapsing Candida albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J. 2016;35:428–31.

    Article  PubMed  Google Scholar 

  10. Alves de Medeiros AK, Lodewick E, Bogaert DJAA, Haerynck F, Van Daele S, Lambrecht B, et al. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol. 2016;36:204–9.

    Article  PubMed  Google Scholar 

  11. Cetinkaya PG, Ayvaz DC, Karaatmaca B, Gocmen R, Söylemezoğlu F, Bainter W, et al. A young girl with severe cerebral fungal infection due to card 9 deficiency. Clin Immunol. 2018;191:21–6.

    Article  PubMed  CAS  Google Scholar 

  12. Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova J-L. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li J, Vinh DC, Casanova J-L, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46–57.

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J. Invest. Dermatol. 2018;138:607–17.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133:905–8.

    Article  PubMed  CAS  Google Scholar 

  16. Drewniak A, Gazendam RP, Tool ATJJ, van Houdt M, Jansen MH, Van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–92.

    Article  PubMed  CAS  Google Scholar 

  17. Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59:81–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jones N, Garcez T, Newman W, Denning D, Jones N, Garcez T, et al. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016;2016:2015–7.

    Google Scholar 

  19. Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, et al. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2017;12:3218–21.

    Google Scholar 

  20. Jachiet M, Lanternier F, Rybojad M, Bagot M, Ibrahim L, Casanova J-L, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatology. 2015;151:192–4.

    Article  PubMed  Google Scholar 

  21. Boudghene Stambouli O, Amrani N, Boudghéne Stambouli K, Bouali F. Dermatophytic disease with deficit in CARD9: a new case with a brain impairment. J Mycol Med. 2017;27:250–3.

    Article  PubMed  CAS  Google Scholar 

  22. Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive exophiala infection. J Infect Dis. 2015;211:1241–50.

    Article  PubMed  CAS  Google Scholar 

  23. Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br J Dermatol. 2016;174:176–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bertin J, Guo Y, Wang L, Srinivasula SM, Jacobson MD, Poyet JL, et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kB. J Biol Chem. 2000;275:41082–6.

    Article  PubMed  CAS  Google Scholar 

  25. Parkhouse R, Boyle JP, Mayle S, Sawmynaden K, Rittinger K, Monie TP. Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain. FEBS Lett. 2014;588:2830–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hsu Y-MSMS, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8:198–205.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.

    Article  PubMed  CAS  Google Scholar 

  28. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Groß O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Le Zhu L, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39:324–34.

    Article  PubMed  CAS  Google Scholar 

  30. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.

    Article  PubMed  CAS  Google Scholar 

  31. Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6(36):6–11.

    Google Scholar 

  32. Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442:651–6.

    Article  PubMed  CAS  Google Scholar 

  33. Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007;8:619–29.

    Article  PubMed  CAS  Google Scholar 

  34. Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41:276–81.

    Article  PubMed  CAS  Google Scholar 

  35. Roth S, Ruland J, Roth SRJ. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013;34:243–50.

    Article  PubMed  CAS  Google Scholar 

  36. Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36:32–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kingeter LM, Lin X. C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol. 2012;9:105–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ruland J. CARD9 signaling in the innate immune response. Ann N Y Acad Sci. 2008;1143:35–44.

    Article  PubMed  CAS  Google Scholar 

  39. LeibundGut-Landmann S, Groß O, Robinson MJ, Osorio F, Slack EC, Tsoni SVS, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.

    Article  PubMed  CAS  Google Scholar 

  40. Roth S, Bergmann H, Jaeger M, Netea M. Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell Rep. 2016;17:2572–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211:2307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Willment JA, Marshall AS, Reid DM, Williams DL, Wong SYC, Gordon S, et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35:1539–47.

    Article  PubMed  CAS  Google Scholar 

  43. Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.

    Article  PubMed  CAS  Google Scholar 

  44. Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180:7404–13.

    Article  PubMed  CAS  Google Scholar 

  45. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–17.

    Article  PubMed  CAS  Google Scholar 

  46. Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Identification of a human homologue of the dendritic cell-associated C-typt lectin-1, dectin-1. Gene. 2001;272:51–60.

    Article  PubMed  CAS  Google Scholar 

  47. Kanazawa N, Tashiro K, Inaba K, Lutz MB, Miyachi Y. Molecular cloning of human Dectin-2. J Invest Dermatol. 2004;122:1522–4.

    Article  PubMed  CAS  Google Scholar 

  48. Balch SG, McKnight AJ, Seldin MF, Gordon S. Cloning of a novel C-type lectin expressed by murine macrophages. J Biol Chem. 1998;273:18656–64.

    Article  PubMed  CAS  Google Scholar 

  49. Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–48.

    PubMed  CAS  Google Scholar 

  50. Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756–6.

  51. McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol. 2005;68:163–73.

    Article  PubMed  CAS  Google Scholar 

  52. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, et al. Dectin-1 directs T helper cell differentiation by controlling noncannonical NK-kB activation through Raf-1 and Syk. Nat Immunol. 2009;10:203–13.

    Article  PubMed  CAS  Google Scholar 

  53. Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138:957–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci. 2015;112:13615–20.

    Article  PubMed  CAS  Google Scholar 

  55. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–82.

    Article  PubMed  CAS  Google Scholar 

  58. Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13:109–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gazendam RP, Van Hamme JL, Tool ATJ, Van Houdt M, Verkuijlen PJJH, Herbst M, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124:590–7.

    Article  PubMed  CAS  Google Scholar 

  60. Liang P, Wang X, Wang R, Wan Z, Han W, Li R. CARD9 deficiencies linked to impaired neutrophil functions against Phialophora verrucosa. Mycopathologia. 2015;179:347–57.

    Article  PubMed  CAS  Google Scholar 

  61. Drummond RA, Zahra FT, Natarajan M, Swamydas M, Hsu AP, Wheat LJ, et al. GM-CSF therapy in human CARD9 deficiency. J. Allergy Clin. Immunol. 2018.

  62. Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol. 2017;181:75–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.

    Article  PubMed  CAS  Google Scholar 

  64. Lionakis MS, Lim JK, Lee C-CR, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011;3:180–99.

    Article  PubMed  CAS  Google Scholar 

  65. Saresella M, Roda K, Speciale L, Taramelli D, Mendozzi E, Guerini F. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13q leukocytes. J Immunol Methods. 1997;210:227–34.

    Article  PubMed  CAS  Google Scholar 

  66. Wu W, Zhang R, Wang X, Song Y, Liu Z, Han W, et al. Impairment of immune response against dematiaceous fungi in Card9 knockout mice. Mycopathologia. 2016;181:631–42.

    Article  PubMed  CAS  Google Scholar 

  67. Conti H, Gaffen S. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol. 2015;195(3):780–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Cypowyj S, Picard C, Maródi L, Casanova JL, Puel A. Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol. 2012;42:2246–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Glocker E, Grimbacher B. Chronic mucocutaneous candidiasis and congenital susceptibility to Candida. Curr Opin Allergy Clin Immunol. 2010;10:542–50.

    Article  PubMed  Google Scholar 

  70. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim K, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39:676–86.

    Article  PubMed  CAS  Google Scholar 

  72. Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212:619–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010;10:479–98.

    Article  PubMed  CAS  Google Scholar 

  74. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, et al. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet. 2001;68:1077–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:1–9.

    Article  CAS  Google Scholar 

  76. Queiroz-Telles F, Fahal AH, Falci DR, Caceres DH, Chiller T, Pasqualotto AC. Neglected endemic mycoses. Lancet Infect Dis. 2017;3099:1–11.

    Google Scholar 

  77. Lee PP, Lau YL. Cellular and molecular defects underlying invasive fungal infections—revelations from endemic mycoses. Front Immunol. 2017;8:735.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sari S, Dalgic B, Muehlenbachs A, Deleon-Carnes M, Goldsmith CS, Ekinci O, et al. Prototheca zopfii colitis in inherited CARD9 deficiency. JID. 2018;XX.

  79. Torres JM, Martinez-barricarte R, García-gómez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132:151–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133:1458–1462.e7.

    Article  PubMed  CAS  Google Scholar 

  82. Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273.

    Article  PubMed Central  CAS  Google Scholar 

  83. Bennett RJ, Turgeon BG. Fungal sex: the Ascomycota. Microbiol. Spectr. 2016;4:1–28.

    Google Scholar 

  84. Gow NAR, Latge J, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5:1–25.

    Google Scholar 

  85. Hoving JC, Kolls JK. New advances in understanding the host immune response to pneumocystis. Curr Opin Microbiol. 2017;40:65–71.

    Article  PubMed  CAS  Google Scholar 

  86. Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12.

    Article  PubMed  CAS  Google Scholar 

  87. McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78.

    Article  PubMed  Google Scholar 

  88. Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2016:1–9.

  89. Lionakis MS, Netea MG. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 2013;9(1):1–5.

    Article  CAS  Google Scholar 

  90. Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182:77–86.

    Article  PubMed  Google Scholar 

  92. Havlickova B, Czaika VA, Fredrich M. Epidemiological trends in skin mycosis worldwide. Mycosis. 2008;51:2–15.

    Article  Google Scholar 

  93. Rouzaud C, Hay R, Chosidow O, Dupin N, Puel A, Lortholary O, et al. Severe dermatophytosis and acquired or innate immunodeficiency: a review. J Fungi. 2015;2:4.

    Article  CAS  Google Scholar 

  94. Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med. 2015;5:a019570.

    Article  PubMed Central  CAS  Google Scholar 

  95. Chan GF, Puad MSA, Chin CF, Rashid NAA. Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol. 2011;56:459–67.

    Article  CAS  Google Scholar 

  96. Dixon LJ, Schlub RL, Pernezny K, Datnoff LE. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology. 2009;99:1015–27.

    Article  PubMed  CAS  Google Scholar 

  97. Samerpitak K, Duarte APM, Attili-Angelis D, Pagnocca FC, Heinrichs G, Rijs AJMM, et al. A new species of the oligotrophic genus Ochroconis (Sympoventuriaceae). Mycol Prog. 2015;14:1–10.

    Article  Google Scholar 

  98. Brandt ME, Warnock DW. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother. 2003;15:36–47.

    Article  PubMed  Google Scholar 

  99. Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev. 2014;27:527–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Revanker S, Sutton D. Melanized fungi in human disease. Clin Microbiol Rev. 2010;23(4):884–928.

    Article  Google Scholar 

  101. Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2017;10:296–322.

    Article  PubMed  Google Scholar 

  102. Latgé J. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310–50.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dinauer MC. Primary immunedeficiencies with defects in neutrophil function. Hematology. 2016;2016:43–50.

    Article  PubMed  Google Scholar 

  104. Lee JH, Kim JS, Park YH. Diagnosis and treatment of postpartum Candida endophthalmitis. J Obstet Gynaecol Res. 2012;38:1220–2.

    Article  PubMed  Google Scholar 

  105. Oksi J, Finnilä T, Hohenthal U, Rantakokko-Jalava K. Candida dubliniensis spondylodiscitis in an immunocompetent patient. Case report and review of the literature. Med Mycol Case Rep. 2014;3:4–7.

    Article  PubMed  Google Scholar 

  106. Moon HH, Kim JH, Moon BG, Kim JS. Cervical spondylodiscitis caused by Candida albicans in non-immunocompromised patient. J Korean Neurosurg Soc. 2008;43:45–7.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Miller DJ, Mejicano GC. Vertebral osteomyelitis due to Candida species: case report and literature review. Clin Infect Dis. 2001;53706:523–30.

    Article  Google Scholar 

  108. Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. Candidemia and invasive candidiasis in adults: a narrative review. Eur J Intern Med. 2016;34:21–8.

    Article  PubMed  Google Scholar 

  109. Seçkin D, Arikan S, Haberal M. Deep dermatophytosis caused by Trichophyton rubrum with concomitant disseminated nocardiosis in a renal transplant recipient. J Am Acad Dermatol. 2004;51:S173–6.

    Article  PubMed  Google Scholar 

  110. Dan P, Rawi R, Hanna S, Reuven B. Invasive cutaneous Trichophyton shoenleinii infection in an immunosuppressed patient. Int J Dermatol. 2011;50:1266–9.

    Article  PubMed  Google Scholar 

  111. Inaoki M, Nishijima C, Miyake M, Asaka T, Hasegawa Y, Anzawa K, et al. Case of dermatophyte abscess caused by Trichophyton rubrum: a case report and review of the literature. Mycoses. 2015;58:318–23.

    Article  PubMed  Google Scholar 

  112. Marconi VC, Kradin R, Marty FM, Hospenthal DR, Kotton CN. Disseminated dermatophytosis in a patient with hereditary hemochromatosis and hepatic cirrhosis: case report and review of the literature. Med Mycol. 2010;48:518–27.

    Article  PubMed  Google Scholar 

  113. Hadida E, Schousboe A. Dermatophytic disease aspects. Alger Med. 1959;63:303–36.

    Google Scholar 

  114. Gong JQ, Liu XQ, Xu HB, Zeng XS, Chen W, Li XF. Deep dermatophytosis caused by Trichophyton rubrum: report of two cases. Mycoses. 2007;50:102–8.

    Article  PubMed  CAS  Google Scholar 

  115. Kim S-H, Jo IH, Kang J, Joo SY, Choi J-H. Dermatophyte abscesses caused by Trichophyton rubrum in a patient without pre-existing superficial dermatophytosis: a case report. BMC Infect Dis. 2016;16:298–302.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, De Hoog GS. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol. 2007;45:3713–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Revankar SG, Sutton DA, Rinaldi MG. Primary central nervous system phaeohyphomycosis: a review of 101 cases. Clin Infect Dis. 2004;38:206–16.

    Article  PubMed  Google Scholar 

  118. Gao LJ, Yu J, Wang DL, Li RY. Recalcitrant primary subcutaneous Phaeohyphomycosis due to Phialophora verrucosa. Mycopathologia. 2013;175:165–70.

    Article  PubMed  Google Scholar 

  119. Panda A, Das H, Deb M, Khanal B, Kumar S. Aureobasidium pullulans keratitis. Clin Exp Ophthalmol. 2006;34:260–4.

    Article  PubMed  Google Scholar 

  120. Koppang HS, Olsen I, Stuge U, Sandven P. Aureobasidium infection of the jaw. J Oral Pathol Med. 1991;20:191–5.

    Article  PubMed  CAS  Google Scholar 

  121. Chen WT, Tu ME, Sun PL. Superficial Phaeohyphomycosis caused by Aureobasidium melanogenum mimicking tinea nigra in an immunocompetent patient and review of published reports. Mycopathologia. 2016;181:555–60.

    Article  PubMed  Google Scholar 

  122. Lv GX, Ge YP, Shen YN, Li M, Zhang X, Chen H, et al. Phaeohyphomycosis caused by a plant pathogen, Corynespora cassiicola. Med Mycol. 2011;49:657–61.

    PubMed  Google Scholar 

  123. Mahgoub E. Corynespora cassiicola, a new agent of maduromycetoma. J Trop Med Hyg. 1969;72:218–21.

    PubMed  CAS  Google Scholar 

  124. Yamada H, Takahashi N, Hori N, Asano Y, Mochizuki K, Ohkusu K, et al. Rare case of fungal keratitis caused by Corynespora cassiicola. J Infect Chemother. 2013;19:1167–9.

    Article  PubMed  Google Scholar 

  125. Huang HK, Liu CE, Liou JH, Hsiue HC, Hsiao CH, Hsueh PR. Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen. J Inf Secur. 2010;60:188–90.

    Google Scholar 

  126. Segal B. Aspergillosis. N Engl J Med. 2009;360(18):1870–84.

    Article  PubMed  CAS  Google Scholar 

  127. Whibley N, Jaycox JR, Reid D, Garg AV, Taylor JA, Clancy CJ, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-a-dependent, IL-17-independent mechanism. J Immunol. 2015;195:3781–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bishu S, Hernández-Santos N, Simpson-Abelson MR, Huppler AR, Conti HR, Ghilardi N, et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect Immun. 2014;82:1173–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Jhingran A, Mar KB, Kumasaka DK, Knoblaugh SE, Ngo LY, Segal BH, et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012;2:1762–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Jhingran A, Kasahara S, Shepardson KM, Junecko BAFF, Heung LJ, Kumasaka DK, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11:1–22.

    Article  CAS  Google Scholar 

  131. Hung CY, Castro-Lopez N, Cole GT. Card9- and MyD88-mediated gamma interferon and nitric oxide production is essential for resistance to subcutaneous Coccidioides posadasii infection. Infect Immun. 2016;84:1166–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with cryptococcus neoformans. Infect Immun. 2014;82:1606–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Casanova J-L, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol. 2004;4:55–66.

    Article  PubMed  CAS  Google Scholar 

  134. Quintana-Murci L, Alcaïs A, Abel L, Casanova JL. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol. 2007;8:1165–71.

    Article  PubMed  CAS  Google Scholar 

  135. Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, et al. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med. 2010;207:777–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wu W, Hsu Y-MSMS, Bi L, Songyang Z, Lin X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol. 2009;10:1208–14.

    Article  PubMed  CAS  Google Scholar 

  137. Uematsu T, Iizasa E, Kobayashi N, Yoshida H, Hara H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:1–11.

    Article  CAS  Google Scholar 

  138. Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections. Emerg Infect Dis. 2014;20:1149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Limper AH, Adenis A, Le T, Harrison TS. Fungal infections 1 fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;3099:1–10.

    Google Scholar 

  140. Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis. 2010;50:1091–100.

    Article  PubMed  Google Scholar 

  141. Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.

    Article  PubMed  Google Scholar 

  142. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova J-L, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25:736–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Grimm MJ, Vethanayagam RR, Almyroudis NG, Lewandowski D, Rall N, Blackwell TS, et al. Role of NADPH oxidase in host defense against aspergillosis. Med Mycol. 2011;49:S144–9.

    Article  PubMed  CAS  Google Scholar 

  144. Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol. 2017:1–18.

  145. Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Bousfiha A, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36:490–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zhang Q, Jing H, Su HC. Recent advances in DOCK8 immunodeficiency syndrome. J Clin Immunol. 2016;36:441–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a french national survey. Medicine (Baltimore). 2012;91:1–19.

    Article  CAS  Google Scholar 

  150. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-g immunity. Semin Immunol. 2014;26:454–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Fischer A. Severe combined immunodeficiencies (SCID). Clin Exp Immunol. 2000;122:143–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev. 2011;24:490–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Firinu D, Massidda O, Lorrai MM, Serusi L, Peralta M, Barca MP, et al. Successful treatment of chronic mucocutaneous candidiasis caused by azole-resistant Candida albicans with posaconazole. Clin Dev Immunol. 2011;2011:4.

    Article  Google Scholar 

  154. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Executive summary: clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:409–17.

    Article  PubMed  Google Scholar 

  155. Pires CAA, da Cruz NFS, Lobato AM, de Sousa PO, Carneiro FRO, Mendes AMD. Clinical, epidemiological, and therapeutic profile of dermatophytosis. An Bras Dermatol. 2014;89:259–64.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gupta A, Cooper E. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.

    Article  PubMed  Google Scholar 

  157. Oberlin KE, Nichols AJ, Rosa R, Dejman A, Mattiazzi A, Guerra G, et al. Phaeohyphomycosis due to Exophiala infections in solid organ transplant recipients: case report and literature review. Transpl Infect Dis. 2017:e12723.

  158. Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect. 2014;20:47–75.

    Article  PubMed  CAS  Google Scholar 

  159. Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016;63:e1–60.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Filipovich AH. Hematopoietic cell transplantation for correction of primary immunodeficiencies. Bone Marrow Transplant. 2008;42:S49–52.

    Article  PubMed  Google Scholar 

  161. Seger RA. Modern management of chronic granulomatous disease. Br J Haematol. 2008;140:255–66.

    Article  PubMed  CAS  Google Scholar 

  162. Soncini E, Slatter MA, Jones LBKR, Hughes S, Hodges S, Flood TJ, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol. 2009;145:73–83.

    Article  PubMed  CAS  Google Scholar 

  163. Parta M, Kelly C, Kwatemaa N, Theobald N, Hilligoss D, Qin J, et al. Allogeneic reduced-intensity hematopoietic stem cell transplantation for chronic granulomatous disease: a single-center prospective trial. J Clin Immunol. 2017;37:548–58.

    Article  PubMed  CAS  Google Scholar 

  164. Decook LJ, Thoma M, Huneke T, Johnson ND, Wiegand RA, Patnaik MM, et al. Impact of lymphocyte and monocyte recovery on the outcomes of allogeneic hematopoietic SCT with fludarabine and melphalan conditioning. Bone Marrow Transplant. 2013;48:708–14.

    Article  PubMed  CAS  Google Scholar 

  165. Maeurer M, Magalhaes I, Andersson J, Ljungman P, Sandholm E, Ulhin M, et al. Allogeneic hematopoietic cell transplantation for GATA2 deficiency in a patient with disseminated human papillomavirus disease. Transplantation. 2014;98:e94–5.

    Article  Google Scholar 

  166. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, Hsu AP, Zerbe CS, Calvo KR, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2017;118:3715–21.

    Article  CAS  Google Scholar 

  167. Miceli MH, Churay T, Braun T, Kauffman CA, Couriel DR. Risk factors and outcomes of invasive fungal infections in allogeneic hematopoietic cell transplant recipients. Mycopathologia. 2017;182:495–504.

    Article  PubMed  Google Scholar 

  168. Casanova J. Human genetic basis of interindividual variability in the course of infection. PNAS. 2015;112:E7118–27.

    PubMed  CAS  Google Scholar 

  169. Casanova J. Severe infectious diseases of childhood as monogenic inborn errors of immunity. PNAS. 2015;1:E7128–37.

    Google Scholar 

Download references

Acknowledgments

We thank all members of the Laboratory of Human Genetics of Infectious Diseases from the Necker and Rockefeller branches and, in particular, Yelena Nemirovskaya and Cécile Patissier for administrative work, Peng Zhang and Yuval Itan for helpful discussions, and Mélanie Migaud for technical work. We also warmly thank Dr. Fanny Lanternier and Prof. Olivier Lotholary, and Prof. Davood Mansouri (Masih Daneshvari Hospital, Tehran, Iran) for his collaboration and follow-up of patients.

Funding

This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Descartes University, Assistance publique - Hôpitaux de Paris (AP-HP), the Rockefeller University, the St. Giles Foundation, and grants from Agence Nationale pour la Recherche (ANR) (grant HGDIFD no. ANR-14-CE15-0006-01, grant EURO-CMC no. ANR-14-RARE-0005-02) and from the National Institutes of Health (NIH) (R01-AI-127564). This study also received funding from the ANR as part of the “Investments for the Future” program (grant number ANR-10-IAHU-01) and Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID). AP was supported an AP-HP interface contract. EC was supported by the Belgian Fond National de la Recherche Scientifique (F.N.R.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Puel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corvilain, E., Casanova, JL. & Puel, A. Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults. J Clin Immunol 38, 656–693 (2018). https://doi.org/10.1007/s10875-018-0539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-018-0539-2

Keywords

Navigation