Skip to main content

Advertisement

Log in

Etanercept Downregulates the Th17 Pathway and Decreases the IL-17+/IL-10+ Cell Ratio in Patients with Psoriasis Vulgaris

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate circulating and lesional CD4+ and CD8+ cells belonging to Th1, Th2, and Th17 patterns as well as IL-10+ cells before and after a 12-week lasting course with etanercept or acitretin in patients with psoriasis.

Methods

15 patients were given etanercept 50 mg twice weekly and 15 patients acitretin 0,4 mg/kg/day, both for 12 weeks. At the baseline and at the end of the treatment, blood and skin samples were taken to investigate IL-4, IL-8, IL-10, IL-17, and IFN-γ-producing CD4+ and CD8+ cells. As controls, 10 healthy controls (HC) and 6 atopic dermatitis (AD) patients were included into the study.

Results

Psoriasis patients showed augmented IL-17- and IL-8-producing CD4+ cells in the blood than HC and AD patients. In the skin lesions, IL-17+ cells were more represented in psoriasis than in AD, while the number of IL-4-producing cells was reduced in psoriasis patients than in AD ones. Etanercept was able to significantly reduce the number of IL-17- and IL-8-producing CD4+ and CD8+ cells both in skin and blood, as well as to augment the proportion of IL-10-producing CD4+ cells in the skin of psoriatic patients, while acitretin was not.

Conclusions

Our results confirmed the role of Th17 cells in the pathogenesis of psoriasis. Etanercept, but not acitretin, was able to downregulate the Th17 pathway and to increase the percentages of IL-10-producing cells in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445:866–73.

    Article  PubMed  CAS  Google Scholar 

  2. Boyman O, Conrad C, Tonel G, Gilliet M, Nestle FO. The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol. 2007;28:51–7.

    Article  PubMed  Google Scholar 

  3. Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol. 1994;102:145–9.

    Article  PubMed  CAS  Google Scholar 

  4. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199:125–30.

    Article  PubMed  CAS  Google Scholar 

  5. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204:3183–94.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–51.

    Article  PubMed  CAS  Google Scholar 

  7. Lo YH, Torii K, Saito C, Furuhashi T, Maeda A, Morita A. Serum IL-22 correlates with psoriatic severity and serum IL-6 correlates with susceptibility to phototherapy. J Dermatol Sci. 2010;58:225–7.

    Article  PubMed  CAS  Google Scholar 

  8. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol. 2009;129:79–88.

    Article  PubMed  CAS  Google Scholar 

  9. Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K, McClanahan TK, et al. Cutting edge: A critical functional role for IL-23 in psoriasis. J Immunol. 2010;185:5688–91.

    Article  PubMed  CAS  Google Scholar 

  10. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Human Th17 cells: are they different from murine Th17 cells? Eur J Immunol. 2009;39:637–40.

    Article  PubMed  CAS  Google Scholar 

  11. Sallusto F, Lanzavecchia A. Human Th17 cells in infection and autoimmunity. Microbes Infect. 2009;11:620–4.

    Article  PubMed  CAS  Google Scholar 

  12. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130:1373–83.

    Article  PubMed  CAS  Google Scholar 

  13. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128:1207–11.

    Article  PubMed  CAS  Google Scholar 

  14. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–85.

    PubMed  CAS  Google Scholar 

  15. Chen L, Shen Z, Wang G, Fan P, Liu Y. Dynamic frequency of CD4 + CD25 + Foxp3+ Treg cells in psoriasis vulgaris. J Dermatol Sci. 2008;51:200–3.

    Article  PubMed  CAS  Google Scholar 

  16. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, et al. Dysfunctional blood and target tissue CD4 + CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol. 2005;174:164–73.

    PubMed  CAS  Google Scholar 

  17. Fujio K, Okamura T, Yamamoto K. The Family of IL-10-secreting CD4+ T cells. Adv Immunol. 2010;105:99–130.

    Article  PubMed  CAS  Google Scholar 

  18. Chong BF, Wong HK. Immunobiologics in the treatment of psoriasis. Clin Immunol. 2007;123:129–38.

    Article  PubMed  CAS  Google Scholar 

  19. Antiga E, Volpi W, Chiarini C, Cardilicchia E, Filì L, Manuelli C, et al. The role of etanercept on the expression of markers of T helper 17 cells and their precursors in skin lesions of patients with psoriasis vulgaris. Int J Immunopathol Pharmacol. 2010;23:767–74.

    PubMed  CAS  Google Scholar 

  20. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849–61.

    Article  PubMed  CAS  Google Scholar 

  21. Caproni M, Antiga E, Melani L, Volpi W, Del Bianco E, Fabbri P. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J Clin Immunol. 2009;29:210–4.

    Article  PubMed  CAS  Google Scholar 

  22. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296:1735–41.

    Article  PubMed  CAS  Google Scholar 

  23. Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, et al. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol. 2011;127:787–94.e1-9.

    Article  PubMed  Google Scholar 

  24. Zhang L, Yang XQ, Cheng J, Hui RS, Gao TW. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol. 2010;135:108–17.

    Article  PubMed  CAS  Google Scholar 

  25. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD, et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5:e14108.

    Article  PubMed  Google Scholar 

  26. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A, Vatan L, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181:4733–41.

    PubMed  CAS  Google Scholar 

  27. Quaglino P, Ortoncelli M, Comessatti A, Ponti R, Novelli M, Bergallo M, et al. Circulating CD4+CD25 bright FOXP3+ T cells are up-regulated by biological therapies and correlate with the clinical response in psoriasis patients. Dermatology. 2009;219:250–8.

    Article  PubMed  CAS  Google Scholar 

  28. Diluvio L, Romiti ML, Angelini F, Campione E, Rossi P, Prinz JC, et al. Infliximab therapy induces increased polyclonality of CD4 + CD25+ regulatory T cells in psoriasis. Br J Dermatol. 2010;162:895–7.

    Article  PubMed  CAS  Google Scholar 

  29. Yun WJ, Lee DW, Chang SE, Yoon GS, Huh JR, Won CH, et al. Role of CD4CD25FOXP3 regulatory T cells in psoriasis. Ann Dermatol. 2010;22:397–403.

    Article  PubMed  Google Scholar 

  30. Quaglino P, Bergallo M, Ponti R, Barberio E, Cicchelli S, Buffa E, et al. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology. 2011;223:57–67.

    Article  PubMed  CAS  Google Scholar 

  31. Zaba LC, Suárez-Fariñas M, Fuentes-Duculan J, Nograles KE, Guttman-Yassky E, Cardinale I, et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol. 2009;124:1022–10.e1-395.

    Article  PubMed  CAS  Google Scholar 

  32. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell linear. Annu Rev Immunol. 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  33. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203:1685–91.

    Article  PubMed  CAS  Google Scholar 

  34. Biton J, Semerano L, Delavallée L, Lemeiter D, Laborie M, Grouard-Vogel G, et al. Interplay between TNF and regulatory T cells in a TNF-driven murine model of arthritis. J Immunol. 2011;186:3899–910.

    Article  PubMed  CAS  Google Scholar 

  35. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFa therapy. J Exp Med. 2004;200:277–85.

    Article  PubMed  CAS  Google Scholar 

  36. Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-a therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-b. J Exp Med. 2007;204:33–9.

    Article  PubMed  CAS  Google Scholar 

  37. Duan H, Koga T, Kohda F, Hara H, Urabe K, Furue M. Interleukin-8-positive neutrophils in psoriasis. J Dermatol Sci. 2001;26:119–24.

    Article  PubMed  CAS  Google Scholar 

  38. Coimbra S, Oliveira H, Reis F, Belo L, Rocha S, Quintanilha A, et al. Interleukin (IL)-22, IL-17, IL-23, IL-8, vascular endothelial growth factor and tumour necrosis factor-α levels in patients with psoriasis before, during and after psoralen-ultraviolet A and narrowband ultraviolet B therapy. Br J Dermatol. 2010;163:1282–90.

    Article  PubMed  CAS  Google Scholar 

  39. Pietrzak AT, Zalewska A, Chodorowska G, Krasowska D, Michalak-Stoma A, Nockowski P, et al. Cytokines and anticytokines in psoriasis. Clin Chim Acta. 2008;394:7–21.

    Article  PubMed  CAS  Google Scholar 

  40. Fisher GJ, Voorhees JJ. Molecular mechanisms of retinoid actions in skin. FASEB J. 1996;10:1002–13.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Antiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antiga, E., Volpi, W., Cardilicchia, E. et al. Etanercept Downregulates the Th17 Pathway and Decreases the IL-17+/IL-10+ Cell Ratio in Patients with Psoriasis Vulgaris. J Clin Immunol 32, 1221–1232 (2012). https://doi.org/10.1007/s10875-012-9716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9716-x

Keywords

Navigation