Skip to main content

Advertisement

Log in

Lactobacillus acidophilus Could Modulate the Immune Response Against Breast Cancer in Murine Model

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Cancer immune-therapy is an interesting avenue of studying the effects of deviating immune system responses to achieve the desired result. Lactobacilli are inhabitants of the GI tract which have shown beneficial health effects on various ailments including malignancies. Their mechanisms of action comprise a very intense area of research. In this study we evaluated the immunomodulatory effects of Lactobacillus acidophilus in in vivo model of breast cancer. Lactobacillus acidophilus (L.a) was isolated from traditional home-made yogurt and also from neonatal stool by aerobic overnight culture at 37°C in MRS broth. Delayed Type Hypersensitivity (DTH) assay was performed to find the best immunostimulant dose. 4T1 tumour bearing mice were treated with 2 × 108 cfu of isolated L. acidophilus and 20 mg/kg Cyclophosphamide for 15 consecutive days. Tumour volume was measured using a digital vernier calliper. Lymphocyte proliferation was done using MTT proliferation assay. Production of IFNγ, IL-4 and TGF-β from cultured Splenocytes was assessed in the presence of purified tumour antigen. According to results administration of L.a induced a significant decrease in tumour growth pattern (P value = 0.00). Significant alterations in splenocyte production of IFN-γ, IL-4 and TGf-β (P values < 0.05) and also lymphocyte proliferation in L.a treated animals was evident (P value < 0.05). This study indicated that oral administration of L.a is able to alter the cytokine production in tumour bearing mice into a Th1 protective pattern, favourable to anti tumour immunity. Reduced tumour growth rate and increased lymphocyte proliferation are also thus supportive. Further studies are required to elucidate the exact mechanism by which local actions of probiotics affect the systemic immune responses against transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilboa E. DC-based cancer vaccines. J Clin Investig. 2007;117(5):1195.

    Article  PubMed  CAS  Google Scholar 

  2. Smits ELJM, Anguille S, Cools N, Berneman ZN, Van Tendeloo VFI. Dendritic cell-based cancer gene therapy. Hum Gene Ther. 2009;20(10):1106–18.

    Article  PubMed  CAS  Google Scholar 

  3. Huang FP, Chen YX, To CKW. Guiding the “misguided”–functional conditioning of dendritic cells for the DC–based immunotherapy against tumours. Eur J Immunol. 2011.

  4. Smith FO, Klapper JA, Wunderlich JR, Rosenberg SA, Dudley ME. Impact of a recombinant fowlpox vaccine on the efficacy of adoptive cell therapy with tumor infiltrating lymphocytes in a patient with metastatic melanoma. J Immunother. 2009;32(8):870.

    Article  PubMed  CAS  Google Scholar 

  5. Mondino A, Dardalhon V, Michelini RH, Loisel-Meyer S, Taylor N. Redirecting the immune response: role of adoptive T cell therapy. Hum Gene Ther. 2010;21(5):533–41.

    Article  PubMed  CAS  Google Scholar 

  6. Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res. 2011;17(16):5343.

    Article  PubMed  CAS  Google Scholar 

  7. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/− granulocyte-monocyte colony-stimulating factor and/or IFN-α2b in advanced metastatic melanoma: eastern cooperative oncology group phase II trial E1696. Clin Cancer Res. 2009;15(4):1443–51.

    Article  PubMed  CAS  Google Scholar 

  8. Zarei S, Schwenter F, Luy P, Aurrand-Lions M, Morel P, Kopf M, et al. Role of GM-CSF signaling in cell-based tumor immunization. Blood. 2009;113(26):6658–68.

    Article  PubMed  CAS  Google Scholar 

  9. Collado MC, Isolauri E, Salminen S, Sanz Y. The impact of probiotic on gut health. Curr Drug Metabol. 2009;10(1):68–78.

    Article  CAS  Google Scholar 

  10. Schiavi E, Barletta B, Barone A, Butteroni C, Corinti S, Di Felice G. Probiotic treatment induces intestinal regulatory dendritic and T cells, and counter-regulates Th2 responses and anaphylaxis in a mouse model of food allergy. Clin Transl Allergy. 2011;1:1.

    Article  Google Scholar 

  11. Kalliomäki M, Isolauri E. Role of intestinal flora in the development of allergy. Curr Opin Allergy Clin Immunol. 2003;3(1):15.

    Article  PubMed  Google Scholar 

  12. Fedorak RN, Dieleman LA, Madsen KL. Prebiotics, probiotics, antibiotics, and nutritional therapies in IBD. Inflamm Bowel Dis. 2011:123–50.

  13. Stephani J, Radulovic K, Niess JH. Gut Microbiota, Probiotics and Inflammatory Bowel Disease. Archivum immunologiae et therapiae experimentalis. 2011:1–17.

  14. Liong MT. Roles of probiotics and prebiotics in colon cancer prevention: postulated mechanisms and in-vivo evidence. Int J Mol Sci. 2008;9(5):854–63.

    Article  PubMed  CAS  Google Scholar 

  15. Oelschlaeger TA. Mechanisms of probiotic actions-a review. Int J Med Microbiol. 2010;300(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  16. Gill H, Prasad J. Probiotics, immunomodulation, and health benefits. Bioact Compon Milk. 2008:423–54.

  17. Chiba Y, Shida K, Nagata S, Wada M, Bian L, Wang C, et al. Well–controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic lactobacillus casei. Immunology. 2010;130(3):352–62.

    Article  PubMed  CAS  Google Scholar 

  18. Braat H, van den Brande J, van Tol E, Hommes D, Peppelenbosch M, van Deventer S. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr. 2004;80(6):1618.

    PubMed  CAS  Google Scholar 

  19. Torii A, Torii S, Fujiwara S, Tanaka H, Inagaki N, Nagai H. Lactobacillus acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol Int. 2007;56(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  20. Wallace TD, Bradley S, Buckley ND, Green-Johnson JM. Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production. J Food Protect. 2003;66(3):466–72.

    CAS  Google Scholar 

  21. Haller D, Bode C, Hammes W, Pfeifer A, Schiffrin E, Blum S. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut. 2000;47(1):79.

    Article  PubMed  CAS  Google Scholar 

  22. Galdeano CM, Perdigon G. The probiotic bacterium lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol. 2006;13(2):219–26.

    Article  PubMed  CAS  Google Scholar 

  23. Maassen C, van Holten-Neelen C, Balk F, Heijne den Bak-Glashouwer MJ, Leer RJ, Laman JD, et al. Strain-dependent induction of cytokine profiles in the gut by orally administered lactobacillus strains. Vaccine. 2000;18(23):2613–23.

    Article  PubMed  CAS  Google Scholar 

  24. Prescott S, Wickens K, Westcott L, Jung W, Currie H, Black P, et al. Supplementation with lactobacillus rhamnosus or bifidobacterium lactis probiotics in pregnancy increases cord blood interferon–γ and breast milk transforming growth factor–β and immunoglobin A detection. Clin Exp Allergy. 2008;38(10):1606–14.

    Article  PubMed  CAS  Google Scholar 

  25. Chuang L, Wu KG, Pai C, Hsieh PS, Tsai JJ, Yen JH, et al. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J Agric Food Chem. 2007;55(26):11080–6.

    Article  PubMed  CAS  Google Scholar 

  26. Easo J, Measham J, Munroe J, Green-Johnson J. Immunostimulatory actions of lactobacilli: mitogenic induction of antibody production and spleen cell proliferation by lactobacillus delbrueckii subsp. Bulgaricus and lactobacillus acidophilus. Food Agric Immunol. 2002;14(1):73–83.

    Article  Google Scholar 

  27. Takagi A, Matsuzaki T, Sato M, Nomoto K, Morotomi M, Yokokura T. Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis. 2001;22(4):599.

    Article  PubMed  CAS  Google Scholar 

  28. Cheon S, Lee KW, Kim KE, Park JK, Park S, Kim C, et al. Heat-killed Lactobacillus acidophilus La205 enhances NK cell cytotoxicity through increased granule exocytosis. Immunology Letters. 2011.

  29. Yazdi MH, Dallal MMS, Hassan ZM, Holakuyee M, Amiri SA, Abolhassani M, et al. Oral administration of lactobacillus acidophilus induces IL-12 production in spleen cell culture of BALB/c mice bearing transplanted breast tumour. Br J Nutr. 2010;104(2):227–32.

    Article  PubMed  CAS  Google Scholar 

  30. Murosaki S, Muroyama K, Yamamoto Y, Yoshikai Y. Antitumor effect of heat-killed lactobacillus plantarum L-137 through restoration of impaired interleukin-12 production in tumor-bearing mice. Canc Immunol Immunother. 2000;49(3):157–64.

    Article  CAS  Google Scholar 

  31. O’Hara RJ, Greenman J, MacDonald AW, Gaskell KM, Topping KP, Duthie GS, et al. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res. 1998;4(8):1943–8.

    PubMed  Google Scholar 

  32. Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. Enhancement of natural and acquired immunity by lactobacillus rhamnosus (HN001), lactobacillus acidophilus (HN017) and bifidobacterium lactis (HN019). Br J Nutr. 2000;83(02):167–76.

    Article  PubMed  CAS  Google Scholar 

  33. Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol. 1995;155(10):4926.

    PubMed  CAS  Google Scholar 

  34. Massagué J. TGF [beta] in cancer. Cell. 2008;134(2):215–30.

    Article  PubMed  Google Scholar 

  35. Maeda H, Shiraishi A. TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol. 1996;156(1):73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Maroof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroof, H., Hassan, Z.M., Mobarez, A.M. et al. Lactobacillus acidophilus Could Modulate the Immune Response Against Breast Cancer in Murine Model. J Clin Immunol 32, 1353–1359 (2012). https://doi.org/10.1007/s10875-012-9708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9708-x

Keywords

Navigation