Skip to main content

Advertisement

Log in

Elevated Interleukin-21 Correlated to Th17 and Th1 Cells in Patients with Immune Thrombocytopenia

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Interleukin-21 (IL-21) is critical in the development of autoimmune diseases. The role of IL-21 in the pathogenesis of immune thrombocytopenia (ITP) remains unknown.

Materials and Methods

We examined the expression of IL-21, IL-17, and interferon (IFN)-γ in ITP patients and controls by enzyme-linked immunosorbent assay and flow cytometry. Detection of specific anti-platelet GPIIb/IIIa and/or GPIb/IX autoantibodies was measured by modified monoclonal antibody specific immobilization of platelet antigens.

Results

IL-21 was expressed on both CD3+CD8 T cells and CD3+CD8+ T cells by flow cytometry. Plasma IL-21 level and the percentage of CD3+CD8IL-21+ T cells and CD3+CD8+IL-21+ T cells were significantly elevated in ITP patients compared to controls. The percentage of CD3+CD8IL-17+ T (Th17), CD3+CD8IFN-γ+ T (Th1), and CD3+CD8+IFN-γ+ T (Tc1) cells also significantly increased in ITP patients. Moreover, we found a significant positive correlation between CD3+CD8IL-21+ T cells and Th17 cells. In addition, a positive correlation between CD3+CD8IL-21+ T cells and Th1 cells was also found.

Conclusion

Together, our results indicated a possible role of IL-21 in ITP patients correlated to Th17 and Th1 cells, and blockade of IL-21 may be a reasonable therapeutic strategy for ITP especially those with active disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stasi R, Evangelista ML, Stipa E, Buccisano F, Venditti A, Amadori S. Idiopathic thrombocytopenic purpura: current concepts in pathophysiology and management. Thromb Haemost. 2008;99:4–13.

    CAS  PubMed  Google Scholar 

  2. Ogawara H, Handa H, Morita K, Hayakawa M, Kojima J, Amagai H, et al. High Th1⁄Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;71:283–8.

    Article  CAS  PubMed  Google Scholar 

  3. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood. 2004;103:2645–7.

    Article  CAS  PubMed  Google Scholar 

  4. Liu B, Zhao H, Poon MC, Han Z, Gu D, Xu M, et al. Abnormality of CD4(+)CD25(+) regulatory T cell in idiopathic thrombocytopenic purpura. Eur J Haematol. 2007;78:139–43.

    CAS  PubMed  Google Scholar 

  5. Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112:1325–8.

    Article  CAS  PubMed  Google Scholar 

  6. Olsson B, Andersson PO, Jernås M, Jacobsson S, Carlsson B, Carlsson LM, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med. 2003;9:1123–4.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao C, Li X, Zhang F, Wang L, Peng J, Hou M. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica. 2008;93:1428–30.

    PubMed  Google Scholar 

  8. Spolski R, Leonard WL. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2007;26:57–79.

    Article  Google Scholar 

  9. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408:57–63.

    Article  CAS  PubMed  Google Scholar 

  10. Davis ID, Skak K, Smyth MJ, Kristjansen PE, Miller DM, Sivakumar PV. Interleukin-21 signaling: functions in cancer and autoimmunity. Clin Cancer Res. 2007;13:6926–32.

    Article  CAS  PubMed  Google Scholar 

  11. Young DA, Hegen M, Ma HL, Whitters MJ, Albert LM, Lowe L, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 2007;56:1152–63.

    Article  CAS  PubMed  Google Scholar 

  12. Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R:Fc reduces disease progression. J Immunol. 2007;178:3822–30.

    CAS  PubMed  Google Scholar 

  13. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology. 2008;134:1038–48.

    Article  CAS  PubMed  Google Scholar 

  14. Mitoma H, Horiuchi T, Kimoto Y, Tsukamoto H, Uchino A, Tamimoto Y, et al. Decreased expression of interleukin-21 receptor on peripheral B lymphocytes in systemic lupus erythematosus. Int J Mol Med. 2005;16:609–15.

    CAS  PubMed  Google Scholar 

  15. Andersson AK, Feldmann M, Brennan FM. Neutralizing IL-21 and IL-15 inhibits pro-inflammatory cytokine production in rheumatoid arthritis. Scand Immunol. 2008;68:103–11.

    Article  CAS  Google Scholar 

  16. Distler JH, Jüngel A, Kowal-Bielecka O, Michel BA, Gay RE, Sprott H, et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum. 2005;52:856–64.

    Article  CAS  PubMed  Google Scholar 

  17. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113:2386–93.

    Article  CAS  PubMed  Google Scholar 

  18. Hou M, Peng J, Shi Y, Zhang C, Qin P, Zhao C, et al. Mycophenolate mofetil (MMF) for the treatment of steroid-resistant idiopathic thrombocytopenic purpura. Eur J Haematol. 2003;70:353–7.

    Article  CAS  PubMed  Google Scholar 

  19. Spolski R, Leonard WJ. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol. 2008;20:295–301.

    Article  CAS  PubMed  Google Scholar 

  20. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448:480–3.

    Article  CAS  PubMed  Google Scholar 

  21. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448:484–7.

    Article  CAS  PubMed  Google Scholar 

  22. Fina D. Role of interleukin-21 in inflammation and allergy. Inflamm Allergy Drug Targets. 2007;6:63–8.

    Article  CAS  PubMed  Google Scholar 

  23. Strengel M, Sareneva T, Foste D, Julkunen I, Matikainen S. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 responses. J Immunol. 2002;169:3600–5.

    Google Scholar 

  24. Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology. 2005;128:687–94.

    Article  CAS  PubMed  Google Scholar 

  25. Fina D, Sarra M, Caruso R, Del Vecchio Blanco G, Pallone F, MacDonald T, et al. Interleukin-21 contributes to the mucosal T helper Cell type 1 response in celiac disease. Gut. 2008;57:887–92.

    Article  CAS  PubMed  Google Scholar 

  26. Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M, et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon g-producing Th1 cells. J Exp Med. 2002;196:969–77.

    Article  CAS  PubMed  Google Scholar 

  27. Fröhlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, Harris NL. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood. 2007;109:2023–31.

    Article  PubMed  Google Scholar 

  28. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–74.

    Article  CAS  PubMed  Google Scholar 

  29. Sonderegger I, Kisielow J, Meier R, King C, Kopf M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol. 2008;38:1833–8.

    Article  CAS  PubMed  Google Scholar 

  30. Coquet JM, Chakravarti S, Smyth MJ, Godfrey DI. Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol. 2008;180:7097–101.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants from the National Natural Science Foundation (30600680, 30471941, 30770922, 30470742, 30570779, 30600259, 30628015, and 30300312), 973 Project (2006CB503800), Key Clinical Research Project of Chinese Ministry of Health (2007–2009), Research Project of National Public Fare (200802031), Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO704030), the Shandong Technological Development Project (BS2009SW014, 2005BS03022 and 2005GG4202018), Taishan Scholar Foundation, and the SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoxin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Ma, D., Zhang, J. et al. Elevated Interleukin-21 Correlated to Th17 and Th1 Cells in Patients with Immune Thrombocytopenia. J Clin Immunol 30, 253–259 (2010). https://doi.org/10.1007/s10875-009-9353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9353-1

Keywords

Navigation