Skip to main content
Log in

Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Methyl vinyl ketone (MVK) is a key first-generation product from atmospheric isoprene photo-oxidation, especially under high-NOx conditions. In this work, acid-catalyzed reactions of gas-phase MVK with ammonium sulfate (AS), ammonium bisulfate (ABS), and sulfuric acid (SA) particles were investigated in a flow reaction system at relative humidity (RH) of 40 % and 80 %. Ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-TOFMS) and gas chromatography-mass spectrometry (GC-MS) are utilized to identify particle-phase products for developing the reaction mechanisms. High-order oligomers such as dimers and tetramers were detected when ABS and SA particles were used, while no oligomeric products were found when AS particles were used. Particle-phase oligomeric products were formed via i) acid-catalyzed aldol reaction with or without dehydration and/or ii) acid-catalyzed hydration followed by oligomerization. Reactions on SA particles yield more abundant and higher-order oligomers up to hexamers than on ABS particles. Moreover, aldol reaction occurred only on SA particles, but hydration followed by oligomerization occurred in both ABS and SA particles. The high RH condition with the same type of acidic particles was found to favor hydration and facilitate the subsequent oligomerization, while the low RH condition with the same type of acidic particles was found to favor aldol reaction with dehydration (aldol condensation). Overall, the findings suggest acidic particles can facilitate the formation of high-order oligomers in the particle phase, with particle acidity and RH as key factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blank, I., Milo, C., Lin, J.M., Fay, L.B.: Quantification of aroma-impact components by isotope dilution assay — recent developments. Flavor chemistry: 30 years of progress. Kluwer Academic / Plenum Publishers, New York (1999)

  • Budzikiewicz, H., Drabner, G., Hammes, C.: Rearrangements accompanying the fragmentation of ionized 1-Phenylalkan-1-Ols. Org. Mass Spectrom. 28(11), 1326–1328 (1993)

    Article  Google Scholar 

  • Carlton, A.G., Wiedinmyer, C., Kroll, J.H.: A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 9(14), 4987–5005 (2009). doi:10.5194/acp-9-4987-2009

    Article  Google Scholar 

  • Chan, L.P., Chan, C.K.: Enhanced reactive uptake of nonanal by acidic aerosols in the presence of particle-phase organics. Aerosol Sci. Technol. 45(7), 872–883 (2011). doi:10.1080/02786826.2011.567314

    Article  Google Scholar 

  • Chan, A.W.H., Chan, M.N., Surratt, J.D., Chhabra, P.S., Loza, C.L., Crounse, J.D., Yee, L.D., Flagan, R.C., Wennberg, P.O., Seinfeld, J.H.: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 10(15), 7169–7188 (2010). doi:10.5194/acp-10-7169-2010

    Article  Google Scholar 

  • Chen, Z.M., Jie, C.Y., Li, S., Wang, H.L., Wang, C.X., Xu, J.R., Hua, W.: Heterogeneous reactions of methacrolein and methyl vinyl ketone: kinetics and mechanisms of uptake and ozonolysis on silicon dioxide. J. Geophys. Res.-Atmos. 113(D22) (2008). doi:10.1029/2007jd009754

  • Chiavarino, B., Crestoni, M.E., Fornarini, S., Dopfer, O., Lemaire, J., Maitre, P.: Ir spectroscopic features of gaseous C7h7o+ ions: benzylium versus tropylium ion structures. J. Phys. Chem. A 110(30), 9352–9360 (2006). doi:10.1021/Jp0628380

    Article  Google Scholar 

  • Claeys, M., Wang, W., Ion, A.C., Kourtchev, I., Gelencser, A., Maenhaut, W.: Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 38(25), 4093–4098 (2004). doi:10.1016/j.atmosenv.2004.06.001

    Article  Google Scholar 

  • de Gouw, J.A., Middlebrook, A.M., Warneke, C., Goldan, P.D., Kuster, W.C., Roberts, J.M., Fehsenfeld, F.C., Worsnop, D.R., Canagaratna, M.R., Pszenny, A.A.P., Keene, W.C., Marchewka, M., Bertman, S.B., Bates, T.S.: Budget of organic carbon in a polluted atmosphere: results from the new England air quality study in 2002. J. Geophys. Res.-Atmos. 110(D16) (2005). doi:10.1029/2004jd005623

  • Drexler, E.J., Field, K.W.: Nmr-study of keto-enol tautomerism in beta-dicarbonyl compounds. J. Chem. Educ. 53(6), 392–393 (1976)

    Article  Google Scholar 

  • Duncan, J.L., Schindler, L.R., Roberts, J.T.: A new sulfate-mediated reaction: conversion of acetone to trimethylbenzene in the presence of liquid sulfuric acid. Geophys. Res. Lett. 25(5), 631–634 (1998). doi:10.1029/98gl00250

    Article  Google Scholar 

  • Duncan, J.L., Schindler, L.R., Roberts, J.T.: Chemistry at and near the surface of liquid sulfuric acid: a kinetic, thermodynamic, and mechanistic analysis of heterogeneous reactions of acetone. J. Phys. Chem. B 103(34), 7247–7259 (1999). doi:10.1021/jp991322w

    Article  Google Scholar 

  • Ervens, B., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 11(21), 11069–11102 (2011). doi:10.5194/acp-11-11069-2011

    Article  Google Scholar 

  • Galloway, M.M., Chhabra, P.S., Chan, A.W.H., Surratt, J.D., Flagan, R.C., Seinfeld, J.H., Keutsch, F.N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 9(10), 3331–3345 (2009)

    Article  Google Scholar 

  • Heald, C.L., Jacob, D.J., Park, R.J., Russell, L.M., Huebert, B.J., Seinfeld, J.H., Liao, H., Weber, R.J.: A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 32(18) (2005). doi:10.1029/2005gl023831

  • Hennigan, C.J., Bergin, M.H., Dibb, J.E., Weber, R.J.: Enhanced secondary organic aerosol formation due to water uptake by fine particles. Geophys. Res. Lett. 35(18) (2008). doi:10.1029/2008gl035046

  • Imamura, T., Akiyoshi, H.: Uptake of acetone into sulfuric-acid solutions. Geophys. Res. Lett. 27(9), 1419–1422 (2000). doi:10.1029/1999gl011137

    Article  Google Scholar 

  • Iraci, L.T., Tolbert, M.A.: Heterogeneous interaction of formaldehyde with cold sulfuric acid: implications for the upper troposphere and lower stratosphere. J. Geophys. Res.-Atmos. 102(D13), 16099–16107 (1997). doi:10.1029/97jd01259

    Article  Google Scholar 

  • Jang, M.S., Kamens, R.M.: Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 35(24), 4758–4766 (2001). doi:10.1021/Es010790s

    Article  Google Scholar 

  • Jang, M.S., Czoschke, N.M., Lee, S., Kamens, R.M.: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298(5594), 814–817 (2002)

    Article  Google Scholar 

  • Jang, M., Lee, S., Kamens, R.M.: Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmos. Environ. 37(15), 2125–2138 (2003a). doi:10.1016/S1352-2310(03)00077-3

    Article  Google Scholar 

  • Jang, M.S., Carroll, B., Chandramouli, B., Kamens, R.M.: Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environ. Sci. Technol. 37(17), 3828–3837 (2003b). doi:10.1021/Es021006u

    Article  Google Scholar 

  • Jang, M., Czoschke, N.M., Northcross, A.L.: Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions. Chemphyschem 5(11), 1647–1661 (2004). doi:10.1002/cphc.200301077

    Article  Google Scholar 

  • Jaoui, M., Kleindienst, T.E., Lewandowski, M., Edney, E.O.: Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 1. Method development. Anal. Chem. 76(16), 4765–4778 (2004). doi:10.1021/Ac049919h

    Article  Google Scholar 

  • Jaoui, M., Corse, E., Kleindienst, T.E., Offenberg, J.H., Lewandowski, M., Edney, E.O.: Analysis of secondary organic aerosol compounds from the photooxidation of D-limonene in the presence of NOx and their detection in ambient Pm2.5. Environ. Sci. Technol. 40(12), 3819–3828 (2006). doi:10.1021/Es052566z

    Article  Google Scholar 

  • Jayne, J.T., Worsnop, D.R., Kolb, C.E., Swartz, E., Davidovits, P.: Uptake of gas-phase formaldehyde by aqueous acid surfaces. J. Phys. Chem. 100(19), 8015–8022 (1996)

    Article  Google Scholar 

  • Kroll, J.H., Seinfeld, J.H.: Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42(16), 3593–3624 (2008). doi:10.1016/j.atmosenv.2008.01.003

    Article  Google Scholar 

  • Kroll, J.H., Ng, N.L., Murphy, S.M., Varutbangkul, V., Flagan, R.C., Seinfeld, J.H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res.-Atmos. 110(D23) (2005). doi:10.1029/2005jd006004

  • Li, Y.J., Lee, A.K.Y., Lau, A.P.S., Chan, C.K.: Accretion reactions of octanal catalyzed by sulfuric acid: product identification, reaction pathways, and atmospheric implications. Environ. Sci. Technol. 42(19), 7138–7145 (2008). doi:10.1021/Es7031373

    Article  Google Scholar 

  • Li, Y.J., Cheong, G.Y.L., Lau, A.P.S., Chan, C.K.: Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols. Environ. Sci. Technol. 44(14), 5483–5489 (2010). doi:10.1021/Es101231m

    Article  Google Scholar 

  • Li, Y.J., Chen, Q., Guzman, M.I., Chan, C.K., Martin, S.T.: Second-generation products contribute substantially to the particle-phase organic material produced by beta-caryophyllene ozonolysis. Atmos. Chem. Phys. 11(1), 121–132 (2011). doi:10.5194/acp-11-121-2011

    Article  Google Scholar 

  • Liggio, J., Li, S.M.: Reversible and irreversible processing of biogenic olefins on acidic aerosols. Atmos. Chem. Phys. 8(7), 2039–2055 (2008)

    Article  Google Scholar 

  • Liggio, J., Li, S.M., McLaren, R.: Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters. Environ. Sci. Technol. 39(6), 1532–1541 (2005)

    Article  Google Scholar 

  • Liggio, J., Li, S.M.: Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols. Geophys. Res. Lett. 33(13) (2006). doi:10.1029/2006gl026079

  • Lim, Y.B., Tan, Y., Perri, M.J., Seitzinger, S.P., Turpin, B.J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10(21), 10521–10539 (2010). doi:10.5194/acp-10-10521-2010

    Article  Google Scholar 

  • Liu, P., Zhang, Y.: A computationally-efficient secondary organic aerosol module for three-dimensional air quality models. Atmos Chem. Phys. 8(14), 3985–3998 (2008)

    Article  Google Scholar 

  • Martin-Reviejo, M., Wirtz, K.: Is benzene a precursor for secondary organic aerosol? Environ. Sci. Technol. 39(4), 1045–1054 (2005). doi:10.1021/Es049802a

    Article  Google Scholar 

  • McLafferty, F.W., Turecek, F.: Interpretation of Mass Spectra, 4th edn. University Science Books, Mill Valley (1993)

    Google Scholar 

  • Michelsen, R.R., Ashbourn, S.F.M., Iraci, L.T.: Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid. J. Geophys. Res.-Atmos. 109(D23) (2004). doi:10.1029/2004jd005041

  • Noziere, B., Voisin, D., Longfellow, C.A., Friedli, H., Henry, B.E., Hanson, D.R.: The uptake of methyl vinyl ketone, methacrolein, and 2-methyl-3-butene-2-ol onto sulfuric acid solutions. J. Phys. Chem. A 110(7), 2387–2395 (2006). doi:10.1021/Jp055899

    Article  Google Scholar 

  • Noziere, B., Ekstrom, S., Alsberg, T., Holmstrom, S.: Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 37 (2010). doi:10.1029/2009gl041683

  • Pathak, R.K., Louie, P.K.K., Chan, C.K.: Characteristics of aerosol acidity in Hong Kong. Atmos. Environ. 38(19), 2965–2974 (2004). doi:10.1016/j.atmosenv.2004.02.044

    Article  Google Scholar 

  • Pathak, R.K., Wu, W.S., Wang, T.: Summertime Pm2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 9(5), 1711–1722 (2009)

    Article  Google Scholar 

  • Perri, M.J., Lim, Y.B., Seitzinger, S.P., Turpin, B.J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 44(21–22), 2658–2664 (2010). doi:10.1016/j.atmosenv.2010.03.031

    Article  Google Scholar 

  • Pun, B.K., Seigneur, C.: Investigative modeling of new pathways for secondary organic aerosol formation. Atmos. Chem. Phys. 7(9), 2199–2216 (2007)

    Article  Google Scholar 

  • Pun, B.K., Griffin, R.J., Seigneur, C., Seinfeld, J.H.: Secondary organic aerosol—2. Thermodynamic model for gas/particle partitioning of molecular constituents. J. Geophys. Res.-Atmos. 107(D17) (2002). doi:10.1029/2001jd000542

  • Rudich, Y., Donahue, N.M., Mentel, T.F.: Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58, 321–352 (2007). doi:10.1146/annurev.physchem.58.032806.104432

    Article  Google Scholar 

  • Seinfeld, J.H., Erdakos, G.B., Asher, W.E., Pankow, J.F.: Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta(3)-carene-, and cyclohexene-ozone systems. Environ. Sci. Technol. 35(9), 1806–1817 (2001). doi:10.1021/Es001765+

    Article  Google Scholar 

  • Stone, E.A., Yang, L.M., Yu, L.Y.E., Rupakheti, M.: Characterization of organosulfates in atmospheric aerosols at four Asian locations. Atmos. Environ. 47, 323–329 (2012). doi:10.1016/j.atmosenv.2011.10.058

    Article  Google Scholar 

  • Surratt, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H.: Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41(2), 517–527 (2007). doi:10.1021/es062081q

    Article  Google Scholar 

  • Surratt, J.D., Gomez-Gonzalez, Y., Chan, A.W.H., Vermeylen, R., Shahgholi, M., Kleindienst, T.E., Edney, E.O., Offenberg, J.H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R.C., Seinfeld, J.H.: Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 112(36), 8345–8378 (2008). doi:10.1021/Jp802310p

    Article  Google Scholar 

  • Surratt, J.D., Chan, A.W.H., Eddingsaas, N.C., Chan, M.N., Loza, C.L., Kwan, A.J., Hersey, S.P., Flagan, R.C., Wennberg, P.O., Seinfeld, J.H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. U.S.A. 107(15), 6640–6645 (2010). doi:10.1073/pnas.0911114107

    Article  Google Scholar 

  • Szmigielski, R., Surratt, J.D., Vermeylen, R., Szmigielska, K., Kroll, J.H., Ng, N.L., Murphy, S.M., Sorooshian, A., Seinfeld, J.H., Claeys, M.: Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. J. Mass Spectrom. 42(1), 101–116 (2007). doi:10.1002/Jms.1146

    Article  Google Scholar 

  • Volkamer, R., Jimenez, J.L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L.T., Worsnop, D.R., Molina, M.J.: Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys. Res. Lett. 33(17) (2006). doi:10.1029/2006gl026899

  • Volkamer, R., Martini, F.S., Molina, L.T., Salcedo, D., Jimenez, J.L., Molina, M.J.: A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 34(19) (2007). doi:10.1029/2007gl030752

  • Volkamer, R., Ziemann, P.J., Molina, M.J.: Secondary organic aerosol formation from acetylene (C2h2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 9(6), 1907–1928 (2009)

    Article  Google Scholar 

  • Wang, D.W., Guo, H., Chan, C.K.: Measuring ambient acidic ultrafine particles using iron nanofilm detectors: method development. Aerosol Sci. Technol. 46(5), 521–532 (2012). doi:10.1080/02786826.2011.643258

    Article  Google Scholar 

  • Wexler, A.S., Clegg, S.L.: Atmospheric aerosol models for systems including the ions H+, Nh4+, Na+, So42−, No3−,Cl−, Br−, and H2o. J. Geophys. Res.-Atmos. 107(D14) (2002). doi:10.1029/2001jd000451

  • Yu, J.Z., Flagan, R.C., Seinfeld, J.H.: Identification of products containing –Cooh, –OH, and –C=O in atmospheric oxidation of hydrocarbons. Environ. Sci. Technol. 32(16), 2357–2370 (1998)

    Article  Google Scholar 

  • Zhang, Q., Jimenez, J.L., Worsnop, D.R., Canagaratna, M.: A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol. 41(9), 3213–3219 (2007). doi:10.1021/Es061812j

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Research Grants Council of Hong Kong (Project No. 610909) and by U.S. National Science Foundation grant AGS-1057183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chak K. Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.M., Huang, D.D., Li, Y.J. et al. Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. J Atmos Chem 70, 1–18 (2013). https://doi.org/10.1007/s10874-013-9248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-013-9248-7

Keywords

Navigation