Skip to main content
Log in

Crystal Chemistry of Cerium Oxyfluorides: ACe3OF11 and A2Ce3OF12 (A = K, Rb, Cs, NH4)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The study of Ce4+ as a building block using CeF4 as a reagent in hydrothermal synthesis has resulted in several new cerium oxyfluorides that have been structurally characterized by single crystal X-ray diffraction. Two families of compounds are represented: ACe3OF11 (A = K, Rb, NH4), and A2Ce3OF12 (A = Cs). The ACe3OF11 compounds represent a new structure type crystallizing in space group P-6m2 with a = 7.9794(11) Å and c = 8.2513(17) Å for KCe3OF11, a = 8.0351(11) Å and c = 8.3077(17) Å for RbCe3OF11, and a = 8.0457(11) Å and c = 8.2918(17) Å for (NH4)Ce3OF11. The structure of Cs2Ce3OF12 conforms to the same structure type as several other A2M3OF12 (A = K, Rb, Tl; M = Hf, Zr) compounds in space group R-3m, and has unit cell parameters of a = 8.2663(12) Å and c = 31.851(6) Å. The two structures form different cerium oxyfluoride frameworks to accommodate the monovalent cations in different ways. Formation of the different oxyfluoride phases is thus sensitive to the size ratio of the monovalent and tetravalent cations. Synthesis of the ACe3OF11 phases has enabled a comparative analysis of the crystal chemistry across these two families of compounds, and several trends and limitations of the two structure types are identified.

Graphical Abstract

The hydrothermal synthesis of oxyfluorides having compositions ACe3OF11 (A = K, Rb, NH4) and A2Ce3OF12 (A = Cs) is described. Structural comparisons are made between the two structure types, and crystal chemical relationships pertaining to their preferential formation are identified based on a broader examination of their constituent monovalent and tetravalent cations. The ACe3OF11 structure type is a new structure type enabled by the size of the Ce4+ cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burt DM (1989) In: Lipin BR, McKay GA (eds) Geochemistry and Mineralogy of Rare Earth Elements, vol 21. Mineralogical Society of America, Washington, DC, pp 259–307

    Google Scholar 

  2. Underwood CC, McMillen CD, Chen H, Anker JN, Kolis JW (2013) Inorg Chem 52:237–244

    Article  CAS  Google Scholar 

  3. Underwood CC, Mann M, McMillen CD, Kolis JW (2011) Inorg Chem 50:11825–11831

    Article  CAS  Google Scholar 

  4. Underwood CC, Mann M, McMillen CD, Musgraves JD, Kolis JW (2012) Sol State Sci 14:574–579

    Article  CAS  Google Scholar 

  5. Underwood CC, McMillen CD, Kolis JW (2012) J Chem Crystallogr 42:606–610

    Article  CAS  Google Scholar 

  6. Stritzinger J, McMillen CD, Kolis JW (2012) J Chem Crystallogr 42:366–371

    Article  CAS  Google Scholar 

  7. Underwood CC, McMillen CD, Kolis JW (2014) J Chem Crystallogr 44:493–500

    Article  CAS  Google Scholar 

  8. Grzechnik A, Underwood CC, Kolis JW, Friese K (2013) J Fluorine Chem 156:124–129

    Article  CAS  Google Scholar 

  9. Grzechnik A, Underwood CC, Kolis JW (2014) Acta Crystallogr Sect E 70:i12–i13

    Article  CAS  Google Scholar 

  10. Rouse J, Weller MT (2009) Dalton Trans 46:10330–10337

    Article  Google Scholar 

  11. Renaudin G, Dieudonné B, Avignant D, Mapemba E, El-Ghozzi M, Fleutot S, Martinez H, Černý R, Dubois M (2009) Inorg Chem 49:686–694

    Article  Google Scholar 

  12. Bode H, Teufer G (1956) Z Anorg Allgem Chem 283:18–24

    Article  CAS  Google Scholar 

  13. Harris LA (1959) Acta Crystallogr 12:172

    Article  CAS  Google Scholar 

  14. Neumann C, Saalfeld H, Gerdau E, Guse W (1986) Z Kristallogr 175:159–164

    CAS  Google Scholar 

  15. Granzin J, Saalfeld H (1988) Z Kristallogr 183:71–76

    CAS  Google Scholar 

  16. Koller D, Mueller BG (2002) Z Anorg Allgem Chem 628:575–579

    Article  CAS  Google Scholar 

  17. Zachariasen WH (1948) J Am Chem Soc 70:2147–2151

    Article  CAS  Google Scholar 

  18. Zachariasen WH (1948) Acta Crystallogr 1:265–269

    Article  CAS  Google Scholar 

  19. Zachariasen WH (1949) Acta Crystallogr 2:390–393

    Article  CAS  Google Scholar 

  20. Harris LA (1960) Acta Crystallogr 13:502

    Article  CAS  Google Scholar 

  21. Ryan RR, Penneman RA (1971) Acta Crystallogr B 27:829–833

    Article  CAS  Google Scholar 

  22. Brunton GD (1971) Acta Crystallogr B 27:1823–1826

    Article  CAS  Google Scholar 

  23. Brunton GD (1971) Acta Crystallogr B 27:2290–2292

    Article  CAS  Google Scholar 

  24. Brunton GD (1972) Acta Crystallogr B 28:144–147

    Article  CAS  Google Scholar 

  25. Cousson A, Pagès M (1978) Acta Crystallogr B 34:1776–1778

    Article  Google Scholar 

  26. Pulcinelli SH, de Almeida Santos RH, Senegas J (1989) J Fluorine Chem 42:41–50

    Article  CAS  Google Scholar 

  27. Laligant Y, LeBail A, Avignant D, Cousseins JC, Ferey G (1989) J Sol State Chem 80:206–212

    Article  CAS  Google Scholar 

  28. Grzechnik A, Fechtelkord M, Morgenroth W, Posse JM, Friese K (2007) J Phys 19:266219

    Google Scholar 

  29. Grzechnik A, Morgenroth W, Friese K (2008) J Sol State Chem 181:971–975

    Article  CAS  Google Scholar 

  30. Grzechnik A, Underwood CC, Kolis JW, Friese K (2013) J Fluorine Chem 150:8–13

    Article  CAS  Google Scholar 

  31. Griebler WD, Babel D (1980) Z Anorg Allgem Chem 467:187–196

    Article  CAS  Google Scholar 

  32. Gerasimenko AV, Bukvetskii BV, Chernyshev BN, Didenko NA (1990) Z Neorg Khim 35:1611–1613

    CAS  Google Scholar 

  33. Schmidt R, Pausewang G (1986) Z Anorg Allgem Chem 537:175–188

    Article  CAS  Google Scholar 

  34. Shabert M, Pausewang G (1988) Z Anorg Allgem Chem 559:143–148

    Article  Google Scholar 

  35. Katsumata T, Umemoto H, Inaguma Y, Fu D, Itoh M (2008) J Appl Phys 104:044101-1-8

    Article  Google Scholar 

  36. Saada MA, Hemon-Ribaud A, Maisonneuve V, Smiri LS, Leblanc M (2003) Acta Crystallogr Sect E 59:i131–i133

    Article  Google Scholar 

  37. Mansouri I, Avignant D (1984) J Sol State Chem 51:91–99

    Article  CAS  Google Scholar 

  38. CrystalClear (2006) Rigaku. MSC, The Woodlands

    Google Scholar 

  39. Jacobson RA (1998) REQABS. Molecular Structure Corporation, The Woodlands

    Google Scholar 

  40. Spek AL (2003) PLATON: A multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  41. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  42. Shannon RD (1976) Acta Crystallogr A 32:751–767

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation Grants DMR-0907395 and DMR-1410727 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Kolis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Underwood, C.C., McMillen, C.D. & Kolis, J.W. Crystal Chemistry of Cerium Oxyfluorides: ACe3OF11 and A2Ce3OF12 (A = K, Rb, Cs, NH4). J Chem Crystallogr 45, 445–452 (2015). https://doi.org/10.1007/s10870-015-0613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0613-z

Keywords

Navigation