Skip to main content
Log in

Crystal and Molecular Structures of the 2:1 Cocrystal of 4-Nitrophenylacetic acid and N,N′-bis(pyridin-3-ylmethyl)oxalamide, and with the Thioxalamide Analogue

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The common feature of each of the title 2:1 cocrystals is the formation of the O–H···N(pyridyl) hydrogen bonds leading to three-molecule aggregates. The persistent formation of the O–H···N(pyridyl) hydrogen bonds where other functionalities are present, e.g. amide, indicates the robustness of this supramolecular synthon. In the structure of the 2:1 4-nitrophenylacetic acid N,N′-bis(pyridin-3-ylmethyl)oxalamide cocrystal, (1), the amide-H forms a hydrogen bond with the hydroxyl group so that rows of N,N′-bis(pyridin-3-ylmethyl)oxalamide molecules are linked into a supramolecular tape via 4-nitrophenylacetic acid molecules. In the N,N′-bis(pyridin-3-ylmethyl)thioxalamide derivative, (2), the thioamide-H atom only forms an intramolecular N–H···S contact. Nevertheless, a supramolecular tape is formed but mediated by C–H···O(nitro) interactions. Compound (1) crystallizes in the triclinic space group P¯1 with a = 8.195(2) Å, b = 9.502(3) Å, c = 9.999(3) Å, α = 90.631(3)º, β = 102.796(5)º, γ = 108.075(5)º, and Z = 1 (three molecule aggregate). Compound (2) also crystallizes in the triclinic space group P¯1 with a = 8.0772(12) Å, b = 10.2111(12) Å, c = 10.2563(17) Å, α = 71.319(10)º, β = 77.777(11)º, γ = 67.660(9)º, and Z = 1 (three molecule aggregate).

Graphical Abstract

In each cocrystal the carboxylic acid-OH interacts with the pyridyl-N atom via a hydrogen bond to result in a three-molecule aggregate. In the N,N′-bis(pyridin-3-ylmethyl)oxalamide cocrystal, these are linked into a chain via amine-H···O(carboxylic acid) interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tzeng B-C, Chen B-S, Lee S-Y, Liu W-H, Lee G-H, Peng S-M (2005) New J Chem 29:1254

    Article  CAS  Google Scholar 

  2. Tzeng B-C, Yeh H-T, Wu Y-L, Kuo J-H, Lee G-H, Peng S-M (2006) Inorg Chem 45:591

    Article  CAS  Google Scholar 

  3. Tzeng B-C, Huang Y-C, Chen B-S, Wu W-M, Lee S-Y, Lee G-H, Peng S-M (2007) Inorg Chem 46:186

    Article  CAS  Google Scholar 

  4. Schauer CL, Matwey E, Fowler FW, Lauher JW (1998) Cryst Eng 1:213

    Article  CAS  Google Scholar 

  5. Zeng Q, Li M, Wu D, Lei S, Liu C, Piao L, Yang Y, An S, Wang C (2008) Cryst Growth Des 8:869

    Article  CAS  Google Scholar 

  6. Poplaukhin P, Tiekink ERT (2010) CrystEngComm 12:1302

    Article  Google Scholar 

  7. Goroff NS, Curtis SM, Webb JA, Fowler FW, Lauher JW (2005) Org Lett 7:1891

    Article  CAS  Google Scholar 

  8. Wilhelm C, Boyd SA, Chawda S, Fowler FW, Goroff NS, Halada GP, Grey CP, Lauher JW, Luo L, Martin CD, Parise JB, Tarabrella C, Webb JA (2008) J Am Chem Soc 130:4415

    Article  CAS  Google Scholar 

  9. Nguyen TL, Scott A, Dinkelmeyer B, Fowler FW, Lauher JW (1998) New J Chem 22:129

    Article  Google Scholar 

  10. Nguyen TL, Fowler FW, Lauher JW (2001) J Am Chem Soc 123:11057

    Article  CAS  Google Scholar 

  11. Curtis SM, Le N, Nguyen T, Ouyang X, Tran T, Fowler FW, Lauher JW (2005) Supramol Chem 17:31

    Article  CAS  Google Scholar 

  12. Arman HD, Miller T, Poplaukhin P, Tiekink ERT (2009) Acta Crystallogr 65:o3178

    Google Scholar 

  13. Weyna DR, Shattock T, Reddy V, Zaworotko MJ (2008) Cryst Growth Des 8:4533

    Article  Google Scholar 

  14. Morissette SL, Soukasene S, Levinson D, Cima MJ, Almarsson Ö (2003) Proc Natl Acad Sci 100:2180

    Article  CAS  Google Scholar 

  15. Arora KK, Zaworotko MJ (2009) In: Brittain HG (ed) Polymorphism in pharmaceutical solids, vol 2. Informa Healthcare, New York, p 281

    Google Scholar 

  16. Good DJ, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:2252

    Article  CAS  Google Scholar 

  17. Schultheiss N, Newman A (2009) Cryst Growth Des 9:2950

    Article  CAS  Google Scholar 

  18. Hoekstra MS, Sobieray DM, Schwindt MA, Mulhern TA, Grote TM, Huckabee BK, Hendrickson VS, Franklin LC, Granger EJ, Karrick GL (1997) Org Process Res Dev 1:26

    Article  CAS  Google Scholar 

  19. Gao X, Friščić T, MacGillivray LR (2004) Angew Chem Int Ed 43:232

    Article  CAS  Google Scholar 

  20. Etter MC, Baures PW (1988) J Am Chem Soc 111:639

    Article  Google Scholar 

  21. Almarsson Ö, Zaworotko MJ (2004) Chem Commun 1889

  22. Bis JA, Vishweshwar P, Weyna DR, Zaworotko MJ (2007) Molec Pharm 4:401

    Article  CAS  Google Scholar 

  23. Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ (2008) Cryst Growth Des 8:4533

    Article  CAS  Google Scholar 

  24. Broker GA, Tiekink ERT (2007) CrystEngComm 9:1096

    Article  CAS  Google Scholar 

  25. Broker GA, Bettens RPA, Tiekink ERT (2008) CrystEngComm 10:879

    Article  CAS  Google Scholar 

  26. Corlette EM, Tiekink ERT (2009) J Chem Crystallogr 39:603

    Article  CAS  Google Scholar 

  27. Wardell JL, Tiekink ERT (2011) J Chem Crystallogr 41:1418

    Article  CAS  Google Scholar 

  28. Schauer CL, Matwey E, Fowler FW, Lauher JW (1997) J Am Chem Soc 119:10245

    Article  CAS  Google Scholar 

  29. Deveci MA, Irez G (1994) Synth React Inorg Met-Org Chem 24:1763

    Article  CAS  Google Scholar 

  30. Higashi T (1995) ABSCOR. Rigaku Corporation, Tokyo

    Google Scholar 

  31. CrystalClear. User Manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX, 2005

  32. Sheldrick GM (2008) Acta Cryst A64:211

    Google Scholar 

  33. Farrugia LJ (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  34. Brandenburg, K (2006) DIAMOND. Version 3.1c. Crystal Impact GbR, Postfach 1251, Bonn

  35. teXsan (1992) Structure analysis package, Molecular structure corporation, Houston

  36. Spek AL (2009) Acta Crystallogr D65:148

    CAS  Google Scholar 

Download references

Acknowledgments

Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) and the University of Malaya (UMRG RG125) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. T. Tiekink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arman, H.D., Kaulgud, T., Miller, T. et al. Crystal and Molecular Structures of the 2:1 Cocrystal of 4-Nitrophenylacetic acid and N,N′-bis(pyridin-3-ylmethyl)oxalamide, and with the Thioxalamide Analogue. J Chem Crystallogr 42, 673–679 (2012). https://doi.org/10.1007/s10870-012-0298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0298-5

Keywords

Navigation