Skip to main content
Log in

Bifurcation-based approach reveals synergism and optimal combinatorial perturbation

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graham, T.G.W., Tabei, S.M.A., Dinner, A.R., Ilaria, R.: Modeling bistable cell-fate choices in the Drosophila eye: Qualitative and quantitative perspectives. Development 137, 2265–2278 (2010)

    Article  Google Scholar 

  2. Kimble, J.: Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb. Perspect. Biol. 3, a002683 (2011). doi:10.1101/cshperspect.a002683

    Article  Google Scholar 

  3. LaBarge, M.A., Nelson, C.M., Villadsen, R., Fridriksdottir, A., Ruth, J.R., Stampfer, M.R., Petersen, O.W., Bissell, M.J.: Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. (Camb.) 1, 70–79 (2009)

    Article  Google Scholar 

  4. Louzoun, Y., Xue, C., Lesinski, G.B., Friedman, A.: A mathematical model for pancreatic cancer growth and treatments. J. Theor. Biol. 351, 74–82 (2014)

    Article  MathSciNet  Google Scholar 

  5. Zhao, G., Dharmadhikari, G., Maedler, K., Meyer-Hermann, M.: Possible role of interleukin-1 in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLoS Comput. Biol. 10, e1003798 (2014)

    Article  ADS  Google Scholar 

  6. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    MATH  Google Scholar 

  7. Guantes, R., Poyatos, J.F.: Multistable decision switches for flexible control of epigenetic differentiatioin. PLoS Comput. Biol. 4, e1000235 (2008)

    Article  ADS  Google Scholar 

  8. Wang, R.Q., Liu, K., Chen, L., Aihara, K.: Neural fate decisions mediated by trans-activation and cis-inhibition in notch signaling. Bioinformatics 27, 3158–3165 (2011)

    Article  Google Scholar 

  9. Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. U.S.A. 101, 1822–1827 (2004)

    Article  ADS  Google Scholar 

  10. Wang, G.Y.: Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases. Phys. Biol. 7, 046015 (2010). doi:10.1088/1478-3975/7/4/046015

    Article  ADS  Google Scholar 

  11. Xiong, W., Ferrell, J.E.: A positive-feedback-based bistable “memory module” that governs a cell fate decision. Nature 426, 460–465 (2013)

    Article  ADS  Google Scholar 

  12. Benedito, R., Roca, C., Srensen, I., Adams, S., Gossler, A., Fruttiger, M., Adams, R.H.: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009)

    Article  Google Scholar 

  13. Bollenbach, T., Kishony, R.: Resolution of gene regulatory conflicts caused by combinations of antibiotics. Mol. Cell 42, 413–425 (2011)

    Article  Google Scholar 

  14. Hayward, P., Brennan, K., Sanders, P., Balayo, T., DasGupta, R., Perrimon, N., Arias, A.M.: Notch modulates wnt signalling by associating with Armadillo/beta-catennin and regulating its transcriptional activity. Development 132, 1819–1830 (2005)

    Article  Google Scholar 

  15. Keith, C.T., Borisy, A.A., Stockwell, B.R.: Mulicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005)

    Article  Google Scholar 

  16. Lehar, J., Krueger, A.S., Avery, W., Heilbut, A.M., Johansen, L.M., Price, E.R., Rickles, R.J., Short, G.F. III, Staunton, J.E., Jin, X., Lee, M.S., Zimmermann, G.R., Borisy, A.A.: Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009)

    Article  Google Scholar 

  17. Lehar, J., Zimmermann, G.R., Krueger, A.S., Molnar, R.A., Ledell, J.T., Heilbut, A.M., Short, G.F. III, Gusti, L.C., Nolan, G.P., Magid, O.A., Lee, M.S., Borisy, A.A., Stockwell, B.R., Keith, C.T.: Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007)

    Article  Google Scholar 

  18. Dixon, J.E., Shah, D.A., Rogers, C., Hall, S., Weston, N., Parmenter, C.D.J., McNally, D., Denning, C., Shakesheff, K.M.: Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proc. Natl. Acad. Sci. U.S.A. 111, 5580–5585 (2014)

    Article  ADS  Google Scholar 

  19. Nelander, S., Wang, W., Nilsson, B., She, Q.B., Pratilas, C., Rosen, N., Gennemark, P., Sander, C.: Models from experiments: Combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008). doi:10.1038/msb.2008.53. Epub 2008 Sep 2

    Article  Google Scholar 

  20. Sun, X., Bao, J., Nelson, K.C., Li, K.C., Kulik, G., Zhou, X.: Systems modeling of anti-apoptotic pathways in prostate cancer: Psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput. Biol. 9, e1003358 (2013). doi:10.1371/journal.pcbi.1003358

    Article  ADS  Google Scholar 

  21. Chou, T.C.: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006)

    Article  Google Scholar 

  22. Chou, T.C.: Preclinical versus clinical drug combination studies. Leukemia Lymphoma 49, 2059–2080 (2008)

    Article  Google Scholar 

  23. Chou, T.C.: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010)

    Article  Google Scholar 

  24. Fitzgerald, J.B., Schoeberl, B., Nielsen, U.B., Sorger, P.K.: Systems biology and combination therapy in the quest for clinical efficacy. Nat. Chem. Biol. 2, 458–466 (2006)

    Article  Google Scholar 

  25. Loewe, S.: The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953)

    Google Scholar 

  26. Bliss, C.I.: The calculation of microbial assays. Bacteriol. Rev. 20, 243–258 (1956)

    Google Scholar 

  27. Greco, W.R., Bravo, G., Parsons, J.C.: The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995)

    Google Scholar 

  28. Zhang, Y., Smolen, P., Baxter, D.A., Byrne, J.H.: Computational analyses of synergism in small molecular network motifs. PloS Comput. Biol. 10, e1003524 (2014)

    Article  ADS  Google Scholar 

  29. Yang, K., Bai, H., Ouyang, Q., Lai, L., Tang, C.: Finding multiple target optimal intervention in disease related molecular network. Mol. Syst. Biol. 4, 228 (2008). doi:10.1038/msb.2008.60

    Article  Google Scholar 

  30. Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C., Lai, L.: Synergistic and antagonistic drug combinations depend on network topology. PLoS ONE 9, e93960 (2014). doi:10.1371/journal.pone.0093960

    Article  ADS  Google Scholar 

  31. Chickarmane, V., Troein, C., Nuber, U.A., Sauro, H.M., Peterson, C.: Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol. 2, e123 (2006)

    Article  ADS  Google Scholar 

  32. Huang, S., Guo, Y.P., May, G., Enver, T.: Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007)

    Article  Google Scholar 

  33. Roeder, I., Glauche, I.: Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription fators GATA-1 and PU-1. J. Theor. Biol. 241, 852–865 (2006)

    Article  MathSciNet  Google Scholar 

  34. Lonze, B.E., Ginty, D.D.: Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002)

    Article  Google Scholar 

  35. Song, H., Smolen, P., Av-Ron, E., Baxter, D.A., Byrne, J.H.: Dynamics of a minimal model of interlocked positive and negative feedback loops of transcriptional regulation by cAMP-response element binding proteins. Biophys. J. 92, 3407–3424 (2007)

    Article  ADS  Google Scholar 

  36. Nissim, L., Perli, S.D., Fridkin, A., Perez-Pinera, P., Lu, T.K.: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Molecular Cell 54, 698–710 (2014)

    Article  Google Scholar 

  37. Bijnsdorp, I.V., Giovannetti, E., Peters, G.J.: Analysis of drug interactions. Methods Mol. Biol. 731, 421–434 (2011)

    Article  Google Scholar 

  38. Marchetti, C., Tafi, E., Middei, S., Rubinacci, M.A., Restivo, L., Ammassari-Teule, M., Marie, H.: Synaptic adaptations of CAI pyramidal neurons induced by highly effective combination antidepressant therapy. Biol. Psychiatry 67, 146–154 (2009)

    Article  Google Scholar 

  39. Axelrod, M., Gordon, V.L., Conaway, M., Tarcsafalvi, A., Neitzke, D.J., Gioeli, D., Weber, M.J.: Combinatorial drug screening identifies compensatory pathway interactions and adaptive resistance mechanisms. Oncotarget 4, 622–635 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This research is supported by the National Natural Science Foundation of China (No. 11171206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, S., Liu, Z. et al. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation. J Biol Phys 42, 399–414 (2016). https://doi.org/10.1007/s10867-016-9414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9414-7

Keywords

Navigation