Skip to main content

Advertisement

Log in

An ecological perspective on marine reserves in prey–predator dynamics

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

This paper describes a prey–predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. The existence of possible steady states, along with their local stability, is discussed. A geometric approach is used to derive the sufficient conditions for global stability of the system at the positive equilibrium. Relative size of the reserve is considered as control in order to study optimal sustainable yield policy. Subsequently, the optimal system is derived and then solved numerically using an iterative method with Runge–Kutta fourth-order scheme. Numerical simulations are carried out to illustrate the importance of marine reserve in fisheries management. It is noted that the marine protected area enables us to protect and restore multi-species ecosystem. The results illustrate that dynamics of the system is extremely interesting if simultaneous effects of a regulatory mechanism like marine reserve is coupled with harvesting effort. It is observed that the migration of the resource, from protected area to unprotected area and vice versa, is playing an important role towards the standing stock assessment in both the areas which ultimately control the harvesting efficiency and enhance the fishing stock up to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bhattacharyya, J., Pal, S.: Stage-structured cannibalism with delay in maturation and harvesting of an adult predator. J. Biol. Phys. 39(1), 37–65 (2013)

    Article  Google Scholar 

  2. Banerjee, S., Chakrabarti, C.G.: Non-linear bifurcation analysis of reaction diffusion actilvator-inhibator system. J. Biol. Phys. 25(1), 23–33 (1999)

    Article  Google Scholar 

  3. Kvamsdal, S.F., Sandal, L.K.: The premium of marine protected areas: a simple valuation model. Mar. Resour. Econ. 23, 171–197 (2008)

    Google Scholar 

  4. Hannesson, R.: The economics of marine reserves. Nat. Resour. Model. 15, 273–290 (2002)

    Article  MATH  Google Scholar 

  5. Sumalia, U.R.: Economic models of marine protected areas: an introduction. Nat. Resour. Model. 15, Number-3 (2002)

    Google Scholar 

  6. Neubert, M.G.: Marine reserves and optimal harvesting. Ecol. Lett. 6, 843–849 (2003)

    Article  Google Scholar 

  7. Flaaten, O., Mjølhus, E.: Using reserves to protect fish and wildlife—simplified modeling approaches. Nat. Resour. Model. 18(2), 157–182 (2005)

    Article  MATH  Google Scholar 

  8. Sumalia, U.R.: Marine protected area performance in a model of the fishery. Nat. Resour. Model. 15, Number-4 (2002)

    Google Scholar 

  9. Sumaila, U.R.: Protected marine reserves as fisheries management tools: a bioeconomic analysis. Fish. Res. 37, 287–296 (1998)

    Article  Google Scholar 

  10. Takashina, N., Mougi, A., Iwasa, Y.: Paradox of marine protected areas: suppression of fishing may cause species loss. Popul. Ecol. 54(3), 475–485 (2012)

    Article  Google Scholar 

  11. Wang, W., Takeuchi, Y.: Adaptation of prey and predators between patches. J. Theor. Biol. 258(4), 603–613 (2009)

    Article  MathSciNet  Google Scholar 

  12. Mougi, A., Iwasa, Y.: Unique coevolutionary dynamics in a predator–prey system. J. Theor. Biol. 277(1), 83–89 (2011)

    Article  MathSciNet  Google Scholar 

  13. Luck, T., Clark, C.W., Mangel, M., Munro, G.R.: Implementing the precautionary principles in fisheries management through marine reserves. Ecol. Appl. 8(1), 72–78 (1998)

    Article  Google Scholar 

  14. Hartmann, K., Bode, L., Armsworth, P.: The economic optimality of learning from marine protected areas. ANZIAM. 48, C307–C329 (2007)

    MathSciNet  Google Scholar 

  15. Dubey, B.: A prey–predator model with a reserved area. Nonlinear Anal. Model. Control. 12(4), 479–494 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Flaaten, O., Mjølhus, E.: Nature reserves as a bioeconomic management tool: a simplified modeling approach. Environ. Resour. Econ. 47, 125–148 (2010)

    Article  Google Scholar 

  17. Sanchirico, J.N.: Marine Protected Areas as Fishery Policy: A Discussion of Potential Costs and Benefits. Resources for the Future Discussion Papers Washington, DC (2000)

  18. Boncoeur, J., Alban, F., Guyader, O., Thebaud, O.: Fish, fishers, seals and tourists: economic consequences of creating a marine reserve in a multi- species, multi-activity context. Nat. Resour. Model. 15(4), 387–411 (2002)

    Article  MATH  Google Scholar 

  19. Sandal, L.K., Steinshamn, S.I.: A simplified approach to optimal resource management. Nat. Resour. Model. 14(3), 419–432 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bohnsack, J.A.: Marine reserves: they enhance fisheries, reduce conflicts, and protect resources. Oceanus 36:33, 63–71 (1993)

    Google Scholar 

  21. Anderson, L.G.: A bioeconomic analysis of marine reserves. Nat. Resour. Model. 15(3), 311–334 (2002)

    Article  MATH  Google Scholar 

  22. Sobel, J.: Conserving biological diversity through marine protected areas. Oceanus 36(3), 19–26 (1993)

    MathSciNet  Google Scholar 

  23. Hannesson, R.: Marine reserves: What would they accomplish? Mar. Resour. Econ. 13, 159–170 (1998)

    Google Scholar 

  24. Dixon, J.A: Economic benefits of marine protected areas. Oceanus 36(3), 35–40 (1993)

    Google Scholar 

  25. Conard, J.M.: The bioeconomics of marine sanctuaries. J. Bio Econ. 1, 205–217 (1999)

    Google Scholar 

  26. Srinavasu, P.D.N., Gayetri, I.L.: Influence of prey reserve capacity on predator prey dynamic. Ecol. Model. 181, 191–202 (2005)

    Article  Google Scholar 

  27. Dubey, B., Chandra, P., Sinha, P.: A model for fishery resource with reserve area. Linear Anal: Real World Appl. 4, 625–637 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kar, T.K.: A model for fishery resource with reserve area and facing prey- predator interactions. Can. Appl. Math. Quart. 14(4), 385–399 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Kar, T.K., Chakraborty, K.: Marine reserves and its consequences as a fisheries management tool. World J. Mod. Simul. 5(2), 83–95 (2009)

    Google Scholar 

  30. Kar, T.K., Chakrabarty, K.: Effort dynamics in a prey–predator model with harvesting. Int. J. Inf. Syst. Sci. 6(3), 318–332 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio- dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  32. Clark, C.W.: Mathematical Bioeconomics: The optimal Management of Renewable Resources, 2nd edn. Wiley, New York (1990)

    MATH  Google Scholar 

  33. Chakraborty, K., Chakraborty, M., Kar, T.K.: Regulation of a prey–predator fishery incorporating prey refuge by taxation: a dynamic reaction. J. Biol. Syst. 19(3), 417–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chakraborty, K., Jana, S., Kar, T.K.: Global dynamics and bifurcation in a stage structured prey–predator fishery model with harvesting. Appl. Math. Comput. 218(18), 9271–9290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, M.Y., Muldowney, J.S.: A geometric approach to global stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bunomo, B., Onofrio, A., Lacitignola, D.: Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 216(1), 9–16 (2008)

    Article  MathSciNet  Google Scholar 

  37. Martin, R.H. Jr.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45, 432–454 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Workman, J.T., Lenhart, S.: Optimal control applied to biological models. Chapman and Hall/CRC (2007)

  39. Chakraborty, K., Das, K., Kar, T.K.: Combined harvesting of a stage structured prey–predator model incorporating cannibalism in competitive environment. Comptes Rendus—Biologies. 336(1), 34–45 (2013)

    Article  Google Scholar 

  40. Hackbush, W.: A numerical method for solving parabolic equations with opposite orientations. Computing 20(3), 229–240 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The first author also gratefully acknowledges Director, INCOIS for his encouragement and unconditional help. We are also thankful to Mr. Nimit Dilip Joshi for helping us in proof reading of the manuscript. This is INCOIS contribution number 150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, K., Das, K. & Kar, T.K. An ecological perspective on marine reserves in prey–predator dynamics. J Biol Phys 39, 749–776 (2013). https://doi.org/10.1007/s10867-013-9329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9329-5

Keywords

Navigation