Skip to main content
Log in

Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fuchs, E., Cleveland, D.W.: A structural scaffolding of intermediate filaments in health and disease. Science 279(5350), 514–519 (1998)

    Article  ADS  Google Scholar 

  2. Lee, M.K., Cleveland, D.W.: Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217 (1996)

    Article  Google Scholar 

  3. Povlishock, J.T., Christman, C.W.: The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J. Neurotrauma 12(4), 555–564 (1995)

    Article  Google Scholar 

  4. Steinert, P.R., Roop, D.R.: Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57, 593–625 (1988)

    Article  Google Scholar 

  5. Friede, R.L., Samorajski, T.: Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167(4), 379–387 (1970)

    Article  Google Scholar 

  6. Barry, D.M., Carpenter, C., Yager, C., Golik, B., Barry, K.J., Shen, H., Mikse, O., Eggert, L.S., Schulz, D.J., Garcia, M.L.: Variation of the neurofilament medium KSP repeat sub-domain across mammalian species: implications for altering axonal structure. J. Exp. Biol. 213(1), 128–136 (2010)

    Article  Google Scholar 

  7. Perrot, R., Berges, R., Bocquet, A., Eyer, J.: Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol. Neurobiol. 38(1), 27–65 (2008)

    Article  Google Scholar 

  8. Delisle, M.B., Carpenter, S.: Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J. Neurol. Sci. 63(2), 241–250 (1984)

    Article  Google Scholar 

  9. Munoz, D.G., Greene, C., Perl, D.P., Selkoe, D.J.: Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J. Neuropathol. Exp. Neurol. 47(1), 9–18 (1988)

    Article  Google Scholar 

  10. Goldman, J.E., Yen, S.H., Chiu, F.C., Peress, N.S.: Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221(4615), 1082–1084 (1983)

    Article  ADS  Google Scholar 

  11. Fabrizi, G.M., Cavallaro, T., Angiari, C., Cabrini, I., Taioli, F., Malerba, G., Bertolasi, L., Rizzuto, N.: Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130(Pt 2), 394–403 (2007)

    Article  Google Scholar 

  12. Donaghy, M., King, R.H., Thomas, P.K., Workman, J.M.: Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J. Neurocytol. 17(2), 197–208 (1988)

    Article  Google Scholar 

  13. Sternberger, N.H., Sternberger, L.A., Ulrich, J.: Aberrant neurofilament phosphorylation in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 82(12), 4274–4276 (1985)

    Article  ADS  Google Scholar 

  14. Ishii, T., Haga, S., Tokutake, S.: Presence of neurofilament protein in Alzheimer’s neurofibrillary tangles (ANT). An immunofluorescent study. Acta Neuropathol. 48(2), 105–112 (1979)

    Article  Google Scholar 

  15. Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., Weber, K.: Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J. 2(8), 1295–1302 (1983)

    Google Scholar 

  16. Yuan, A., Rao, M.V., Sasaki, T., Chen, Y., Kumar, A., Veeranna, Liem, R.K., Eyer, J., Peterson, A.C., Julien, J.P., Nixon, R.A.: Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J. Neurosci. 26(39), 10006–10019 (2006)

    Article  Google Scholar 

  17. Yuan, A., Sasaki, T., Kumar, A., Peterhoff, C.M., Rao, M.V., Liem, R.K., Julien, J.P., Nixon, R.A.: Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J. Neurosci. 32(25), 8501–8508 (2012)

    Article  Google Scholar 

  18. Carpenter, D.A., Wallace, l.: Neurofilament triplet protein interactions: evidence for the preferred formation of NF-L-containing dimers and a putative function for the end domains. J. Cell Sci. 109(Pt 10), 2493–2498 (1996)

    Google Scholar 

  19. Janmey, P.A., Leterrier, J.F., Herrmann, H.: Assembly and structure of neurofilaments. Curr. Opin. Colloid Interface Sci. 8(1), 40–47 (2003)

    Article  Google Scholar 

  20. Jacomy, H., Zhu, Q., Couillard-Despres, S., Beaulieu, J.M., Julien, J.P.: Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J. Neurochem. 73(3), 972–984 (1999)

    Article  Google Scholar 

  21. Carter, J., Gragerov, A., Konvicka, K., Elder, G., Weinstein, H., Lazzarini, R.A.: Neurofilament (NF) assembly; divergent characteristics of human and rodent NF-L subunits. J. Biol. Chem. 273(9), 5101–5108 (1998)

    Article  Google Scholar 

  22. Heins, S., Wong, P.C., Muller, S., Goldie, K., Cleveland, D.W., Aebi, U.: The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J. Cell Biol. 123(6 Pt 1), 1517–1533 (1993)

    Article  Google Scholar 

  23. Stevens, M.J., Hoh, J.H.: Interactions between planar grafted neurofilament side-arms. J. Phys. Chem., B 115(23), 7541–7549 (2011)

    Article  Google Scholar 

  24. Zhulina, E.B., Leermakers, F.A.: A self-consistent field analysis of the neurofilament brush with amino-acid resolution. Biophys. J. 93(5), 1421–1430 (2007)

    Article  ADS  Google Scholar 

  25. Chang, R., Kwak, Y., Gebremichael, Y.: Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. J. Mol. Biol. 391(3), 648–660 (2009)

    Article  Google Scholar 

  26. Qianqian Cao, C.Z., He, H., Li, L.: A molecular dynamics study of two apposing polyelectrolyte brushes with mono and multivalent counterions. Macromol. Theory Simul. 18, 441–452 (2009)

    Article  Google Scholar 

  27. Korobko, A.V., Jesse, W., Egelhaaf, S.U., Lapp, A., van der Maarel, J.R.: Do spherical polyelectrolyte brushes interdigitate? Phys. Rev. Lett. 93(17), 177801 (2004)

    Article  ADS  Google Scholar 

  28. Stevenson, W., Chang, R., Gebremichael, Y.: Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model. J. Mol. Biol. 405(4), 1101–1118 (2011)

    Article  Google Scholar 

  29. McQuarrie, D.A.: Statistical Mechanics. University Science Books, Sausalito, CA (2000)

    MATH  Google Scholar 

  30. Smit, B., Fenkel, D.: Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series, vol. 1, 2nd edn. Academic Press, San Diego, CA (2002)

    Google Scholar 

  31. Xu, Z., Marszalek, J.R., Lee, M.K., Wong, P.C., Folmer, J., Crawford, T.O., Hsieh, S.T., Griffin, J.W., Cleveland, D.W.: Subunit composition of neurofilaments specifies axonal diameter. J. Cell Biol. 133(5), 1061–1069 (1996)

    Article  Google Scholar 

  32. Kumar, S., Hoh, J.H.: Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem. Biophys. Res. Commun. 324(2), 489–496 (2004)

    Article  Google Scholar 

  33. Hsieh, S.T., Crawford, T.O., Griffin, J.W.: Neurofilament distribution and organization in the myelinated axons of the peripheral nervous-system. Brain Res. 642(1–2), 316–326 (1994)

    Article  Google Scholar 

  34. Martin, R., Door, R., Ziegler, A., Warchol, W., Hahn, J., Breitig, D.: Neurofilament phosphorylation and axon diameter in the squid giant fibre system. Neuroscience 88(1), 327–336 (1999)

    Article  Google Scholar 

  35. Glicksman, M.A., Soppet, D., Willard, M.B.: Posttranslational modification of neurofilament polypeptides in rabbit retina. J. Neurobiol. 18(2), 167–196 (1987)

    Article  Google Scholar 

  36. Nixon, R.A., Paskevich, P.A., Sihag, R.K., Thayer, C.Y.: Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J. Cell Biol. 126(4), 1031–1046 (1994)

    Article  Google Scholar 

  37. Hsieh, S.T., Kidd, G.J., Crawford, T.O., Xu, Z.S., Lin, W.M., Trapp, B.D., Cleveland, D.W., Griffin, J.W.: Regional modulation of neurofilament organization by myelination in normal axons. J. Neurosci. 14(11), 6392–6401 (1994)

    Google Scholar 

  38. Carden, M.J., Trojanowski, J.Q., Schlaepfer, W.W., Lee, V.M.: Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J. Neurosci. 7(11), 3489–3504 (1987)

    Google Scholar 

  39. Dewaegh, S.M., Lee, V.M.Y., Brady, S.T.: Local modulation of Neurofilament phosphorylation, axonal caliber, and slow axonal-transport by myelinating Schwann-cells. Cell 68(3), 451–463 (1992)

    Article  Google Scholar 

  40. Panwar, A.S., Kumar, S.: Brownian dynamics simulations of polyelectrolyte adsorption in shear flow. J. Chem. Phys. 122(15), 154902 (2005)

    Article  ADS  Google Scholar 

  41. Frishchknecht, A.L.: Forces between nanorods with end-adsorbed chains in a homopolymer melt. J. Chem. Phys. 128(22), 224902 (2008)

    Article  ADS  Google Scholar 

  42. Wittemann, A., Drechsler, M., Talmon, Y., Ballauff, M.: High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. J. Am. Chem. Soc. 127(27), 9688–9689 (2005)

    Article  Google Scholar 

  43. Carden, M.J., Trojanowski, J.Q., Schlaepfer, W.W., Lee, V.M.: Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J. Neurosci. 7(11), 3489–3504 (1987)

    Google Scholar 

  44. Brown, H.G., Hoh, J.H.: Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry 36(49), 15035–15040 (1997)

    Article  Google Scholar 

  45. Hirokawa, N., Glicksman, M.A., Willard, M.B.: Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J. Cell Biol. 98(4), 1523–1536 (1984)

    Article  Google Scholar 

  46. Hirokawa, N.: Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94(1), 129–142 (1982)

    Article  Google Scholar 

  47. Leterrier, J.F., Kas, J., Hartwig, J., Vegners, R., Janmey, P.A.: Mechanical effects of neurofilament cross-bridges—modulation by phosphorylation, lipids, and interactions with F-actin. J. Biol. Chem. 271(26), 15687–15694 (1996)

    Article  Google Scholar 

  48. Letterier, J.F., Eyre, J.: Properties of highly viscous gels formed by neurofilament in vitro: a possible consequence of a specific inter-filament cross-bridging. Biochem. J. 245, 93–101 (1987)

    Google Scholar 

  49. Price, R.L., Paggi, P., Lasek, R.J., Katz, M.J.: Neurofilaments are spaced randomly in the radial dimension of axons. J. Neurocytol. 17(1), 55–62 (1988)

    Article  Google Scholar 

  50. Mukhopadhyay, R., Kumar, S., Hoh, J.H.: Molecular mechanisms for organizing the neuronal cytoskeleton. BioEssays 26(9), 1017–1025 (2004)

    Article  Google Scholar 

  51. Beck, R., Deek, J., Jones, J.B., Safinya, C.R.: Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements. Nat. Mater. 9(1), 40–46 (2010)

    Article  ADS  Google Scholar 

  52. Gou, J.P., Gotow, T., Janmey, P.A., Leterrier, J.F.: Regulation of neurofilament interactions in vitro by natural and synthetic polypeptides sharing Lys-Ser-Pro sequences with the heavy neurofilament subunit NF-H: neurofilament crossbridging by antiparallel sidearm overlapping. Med. Biol. Eng. Comput. 36(3), 371–387 (1998)

    Article  Google Scholar 

Download references

Acknowledgement

R.C. acknowledges support from the Korea Research Foundation (KRF) grant funded by the Korean government (MEST) (No. 2010–0003087) and the Kwangwoon Research Fund (2012) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeshitila Gebremichael.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TIF 171 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayanthi, L., Stevenson, W., Kwak, Y. et al. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes. J Biol Phys 39, 343–362 (2013). https://doi.org/10.1007/s10867-012-9293-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9293-5

Keywords

Navigation