Skip to main content

Advertisement

Log in

Cell Penetrating Peptides: How Do They Do It?

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herce, H.D., Garcia, A.E.: Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc. Natl. Acad. Sci. U. S. A. 104, 20805–20810 (2007)

    Article  ADS  Google Scholar 

  2. Vives, E., Richard, J.P., Rispal, C., Lebleu, B.: TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. 4, 125–132 (2003)

    Article  Google Scholar 

  3. Jarver, P., Langel, U.: Cell-penetrating peptides--a brief introduction. Biochim. Biophys. Acta 1758, 260–263 (2006)

    Article  Google Scholar 

  4. Lundberg, P., Langel, U.: A brief introduction to cell-penetrating peptides. J. Mol. Recognit. 16, 227–233 (2003)

    Article  Google Scholar 

  5. Torchilin, V.P., Levchenko, T.S., Rammohan, R., Volodina, N., Papahadjopoulos-Sternberg, B., D’Souza, G.G.: Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. U. S. A. 100, 1972–1977 (2003)

    Article  ADS  Google Scholar 

  6. Torchilin, V.P., Levchenko, T.S.: TAT-liposomes: a novel intracellular drug carrier. Curr. Protein Pept. Sci. 4, 133–140 (2003)

    Article  Google Scholar 

  7. Torchilin, V.P., Rammohan, R., Weissig, V., Levchenko, T.S.: TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 98, 8786–8791 (2001)

    Article  ADS  Google Scholar 

  8. Green, M., Loewenstein, P.M.: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179–1188 (1988)

    Article  Google Scholar 

  9. Frankel, A.D., Pabo, C.O.: Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988)

    Article  Google Scholar 

  10. Vives, E., Brodin, P., Lebleu, B.: A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997)

    Article  Google Scholar 

  11. Joliot, A., Pernelle, C., Deagostini-Bazin, H., Prochiantz, A.: Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 88, 1864–1868 (1991)

    Article  ADS  Google Scholar 

  12. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., Prochiantz, A.: Cell internalization of the third helix of the Antennapedia homeodomain is receptorindependent. J. Biol. Chem. 271, 18188–18193 (1996)

    Article  Google Scholar 

  13. Derossi, D., Joliot, A.H., Chassaing, G., Prochiantz, A.: The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994)

    Google Scholar 

  14. Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., Sugiura, Y.: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840 (2001)

    Article  Google Scholar 

  15. Futaki, S.: Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm. 245, 1–7 (2002)

    Article  Google Scholar 

  16. Vives, E.: Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?” J. Control Release 109, 77–85 (2005)

    Article  Google Scholar 

  17. Futaki, S.: Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. 57, 547–558 (2005)

    Article  Google Scholar 

  18. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y.: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423 (1992)

    Article  Google Scholar 

  19. Gazit, E., Lee, W.J., Brey, P.T., Shai, Y.: Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33, 10681–10692 (1994)

    Article  Google Scholar 

  20. Matsuzaki, K., Mitani, Y., Akada, K.Y., Murase, O., Yoneyama, S., Zasloff, M., Miyajima, K.: Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37, 15144–15153 (1998)

    Article  Google Scholar 

  21. Kourie, J.I., Shorthouse, A.A.: Properties of cytotoxic peptide-formed ion channels. Adv. Physiol. Educ. 278, C1063–C1087 (2000)

    Google Scholar 

  22. Duclohier, H., Molle, G., Spach, G.: Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys. J. 56, 1017–1021 (1989)

    Google Scholar 

  23. Gallucci, E., Meleleo, D., Micelli, S., Picciarelli, V.: Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Eur. Biophys. J. 32, 22–32 (2003)

    Google Scholar 

  24. Zhang, L., Rozek, A., Hancock, R.E.: Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276, 35714–35722 (2001)

    Article  Google Scholar 

  25. Matsuzaki, K.: Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462, 1–10 (1999)

    Article  Google Scholar 

  26. Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V., Lebleu, B.: Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003)

    Article  Google Scholar 

  27. Ziegler, A., Seelig, J.: Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys. J. 86, 254–263 (2004)

    ADS  Google Scholar 

  28. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B.T., MacKinnon, R.: X-ray structure of a voltage-dependent K+ channel. Nature. 423, 33–41 (2003)

    Article  ADS  Google Scholar 

  29. Jiang, Y., Ruta, V., Chen, J., Lee, A., MacKinnon, R.: The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 423, 42–48 (2003)

    Article  ADS  Google Scholar 

  30. Hessa, T., White, S.H., von Heijne, G.: Membrane insertion of a potassium-channel voltage sensor. Science. 307, 1427 (2005)

    Article  Google Scholar 

  31. Freites, J.A., Tobias, D.J., von Heijne, G., White, S.H.: Interface connections of a transmembrane voltage sensor. Proc. Natl. Acad. Sci. U. S. A. 102, 15059–15064 (2005)

    Article  ADS  Google Scholar 

  32. Huang, H.W.: Peptide-lipid interactions and mechanisms of antimicrobial peptides. Novartis Foundation Symposium. 225, 188–200 (1999) discussion 200-186

    Article  Google Scholar 

  33. Huang, H.W.: Action of antimicrobial peptides: two-state model. Biochemistry. 39, 8347–8352 (2000)

    Article  Google Scholar 

  34. Huang, H.W.: Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys. Acta. 1758, 1292–1302 (2006)

    Article  Google Scholar 

  35. Huang, H.W., Chen, F.Y., Lee, M.T.: Molecular mechanism of Peptide-induced pores in membranes. Phys. Rev. Lett. 92, 198304 (2004)

    Article  ADS  Google Scholar 

  36. Ishitsuka, Y., Pham, D.S., Waring, A.J., Lehrer, R.I., Lee, K.Y.: Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: effect of head group electrostatics and tail group packing. Biochim. Biophys. Acta 1758, 1450–1460 (2006)

    Article  Google Scholar 

  37. Tang, M., Waring, A.J., Hong, M.: Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane Peptide from solid-state NMR. J. Am. Chem. Soc. 129, 11438–11446 (2007)

    Article  Google Scholar 

  38. Tang, M., Waring, A.J., Lehrer, R.I., Hong, M.: Effects of guanidinium-phosphate hydrogen bonding on the membrane-bound structure and activity of an arginine-rich membrane peptide from solid-state NMR spectroscopy. (2008) Angewandte Chemie (International Ed.)

  39. Ziegler, A., Blatter, X.L., Seelig, A., Seelig, J.: Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42, 9185–9194 (2003)

    Article  Google Scholar 

  40. Hessa, T., Monne, M., von Heijne, G.: Stop-transfer efficiency of marginally hydrophobic segments depends on the length of the carboxy-terminal tail. EMBO Reports 4, 178–183 (2003)

    Article  Google Scholar 

  41. Hessa, T., Kim, H., Bihlmaier, K., Lundin, C., Boekel, J., Andersson, H., Nilsson, I., White, S.H., von Heijne, G.: Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005)

    Article  ADS  Google Scholar 

  42. Wender, P.A., Mitchell, D.J., Pattabiraman, K., Pelkey, E.T., Steinman, L., Rothbard, J.B.: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97, 13003–13008 (2000)

    Article  ADS  Google Scholar 

  43. Mishra, A., Gordon, V.D., Yang, L., Coridan, R., Wong, G.C.: HIV TAT forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. (2008) Angewandte Chemie (International Ed.)

  44. Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K.: An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368 (1996)

    Article  Google Scholar 

  45. Rothman, J.E., Lenard, J.: Membrane asymmetry. Science 195, 743–753 (1977)

    Article  ADS  Google Scholar 

  46. Thoren, P.E., Persson, D., Karlsson, M., Norden, B.: The antennapedia peptide penetratin translocates across lipid bilayers - the first direct observation. FEBS Lett. 482, 265–268 (2000)

    Article  Google Scholar 

  47. Thoren, P.E., Persson, D., Esbjorner, E.K., Goksor, M., Lincoln, P., Norden, B.: Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43, 3471–3489 (2004)

    Article  Google Scholar 

  48. Persson, D., Thoren, P.E., Esbjorner, E.K., Goksor, M., Lincoln, P., Norden, B.: Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochim. Biophys. Acta 1665, 142–155 (2004)

    Article  Google Scholar 

  49. Shimanouchi, T., Walde, P., Gardiner, J., Mahajan, Y.R., Seebach, D., Thomae, A., Kramer, S.D., Voser, M., Kuboi, R.: Permeation of a beta-heptapeptide derivative across phospholipid bilayers. Biochim. Biophys. Acta 1768, 2726–2736 (2007)

    Article  Google Scholar 

  50. Terrone, D., Sang, S.L., Roudaia, L., Silvius, J.R.: Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42, 13787–13799 (2003)

    Article  Google Scholar 

  51. Sharonov, A., Hochstrasser, R.M.: Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Biochemistry 46, 7963–7972 (2007)

    Article  Google Scholar 

  52. Binder, H., Lindblom, G.: Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys. J. 85, 982–995 (2003)

    Article  ADS  Google Scholar 

  53. Curnow, P., Mellor, H., Stephens, D.J., Lorch, M., Booth, P.J.: Translocation of the cellpenetrating Tat peptide across artificial bilayers and into living cells. Biochem. Soc. Symp. 72, 199–209 (2005)

    Google Scholar 

  54. Sakai, N., Matile, S.: Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J. Am. Chem. Soc. 125, 14348–14356 (2003)

    Article  Google Scholar 

  55. Sakai, N., Takeuchi, T., Futaki, S., Matile, S.: Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem. 6, 114–122 (2005)

    Article  Google Scholar 

  56. Nishihara, M., Perret, F., Takeuchi, T., Futaki, S., Lazar, A.N., Coleman, A.W., Sakai, N., Matile, S.: Arginine magic with new counterions up the sleeve. Org. Biomol. Chem. 3, 1659–1669 (2005)

    Article  Google Scholar 

  57. Esbjorner, E.K., Lincoln, P., Norden, B.: Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochim. Biophys. Acta 1768, 1550–1558 (2007)

    Article  Google Scholar 

  58. Herce, H.D., Garcia, A.E., Darden, T.: The electrostatic surface term: (I) periodic systems. J. Chem. Phys. 126, 124106 (2007)

    Article  ADS  Google Scholar 

  59. Drin, G., Cottin, S., Blanc, E., Rees, A.R., Temsamani, J.: Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278, 31192–31201 (2003)

    Article  Google Scholar 

  60. Wadia, J.S., Stan, R.V., Dowdy, S.F.: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315 (2004)

    Article  Google Scholar 

  61. El-Andaloussi, S., Johansson, H.J., Holm, T., Langel, U.: A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol. Ther. 15, 1820–1826 (2007)

    Article  Google Scholar 

  62. Reich, M., van Swieten, P.F., Sommandas, V., Kraus, M., Fischer, R., Weber, E., Kalbacher, H., Overkleeft, H.S., Driessen, C.: Endocytosis targets exogenous material selectively to cathepsin S in live human dendritic cells, while cell-penetrating peptides mediate nonselective transport to cysteine cathepsins. J. Leukoc. Biol. 81, 990–1001 (2007)

    Article  Google Scholar 

  63. Kameyama, S., Horie, M., Kikuchi, T., Omura, T., Tadokoro, A., Takeuchi, T., Nakase, I., Sugiura, Y., Futaki, S.: Acid wash in determining cellular uptake of Fab/cellpermeating peptide conjugates. Biopolymers 88, 98–107 (2007)

    Article  Google Scholar 

  64. Magzoub, M., Sandgren, S., Lundberg, P., Oglecka, K., Lilja, J., Wittrup, A., Goran Eriksson, L.E., Langel, U., Belting, M., Graslund, A.: N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem. Biophys. Res. Commun. 348, 379–385 (2006)

    Article  Google Scholar 

  65. Magzoub, M., Pramanik, A., Graslund, A.: Modeling the endosomal escape of cellpenetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44, 14890–14897 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry D. Herce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herce, H.D., Garcia, A.E. Cell Penetrating Peptides: How Do They Do It?. J Biol Phys 33, 345–356 (2007). https://doi.org/10.1007/s10867-008-9074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-008-9074-3

Keywords

Navigation