Skip to main content

Advertisement

Log in

Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis (“Warburg effect”). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3-BP:

3-bromopyruvate

CDNB:

1-chloro-2,4-dinitrobenzene

DMSO:

dimethylsulfoxide

GR:

glutathione reductase

GSH:

glutathione (reduced)

GST:

glutathione S-transferase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

RNS:

reactive nitrogen species

ROS :

reactive oxygen species

References

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722. doi:10.1126/science.1168750

    Article  CAS  Google Scholar 

  • Almeida A, Bolanos JP, Moncada S (2010) E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci U S A 107:738–741. doi:10.1073/pnas.0913668107

    Article  CAS  Google Scholar 

  • Amoêdo ND, Valencia JP, Rodrigues MF, Galina A, Rumjanek FD (2013) How does the metabolism of tumour cells differ from that of normal cells. Biosci Rep 33(6). pii: e00080. doi:10.1042/BSR20130066.

  • Attia YM, El-Abhar HS, Al Marzabani MM, Shouman SA (2015) Targeting glycolysis by 3-bromopyruvate improves tamoxifen cytotoxicity of breast cancer cell lines. BMC Cancer 15:838. doi:10.1186/s12885-015-1850-4

    Article  Google Scholar 

  • Barnard JP, Reynafarje B, Pedersen PL (1993) Glucose catabolism in African trypanosomes. Evidence that the terminal step is catalyzed by a pyruvate transporter capable of facilitating uptake of toxic analogs. J Biol Chem 268:3654–3661

    CAS  Google Scholar 

  • Bartosz G (2008) The other face of oxygen. Polish Scientific Publishers PWN, Warsaw

    Google Scholar 

  • Bartosz G (2009) Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 77:1303–1315. doi:10.1016/j.bcp.2008.11.009

    Article  CAS  Google Scholar 

  • Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, Hutchins AW, Gultekin Y, Peterson TR, Carette JE, Brummelkamp TR, Clish CB, Sabatini DM (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45:104–108. doi:10.1038/ng.2471

    Article  CAS  Google Scholar 

  • Calviño E, Estañ MC, Sánchez-Martín C, Brea R, de Blas E, Boyano-Adánez Mdel C, Rial E, Aller P (2014) Regulation of death induction and chemosensitizing action of 3-bromopyruvate in myeloid leukemia cells: energy depletion, oxidative stress, and protein kinase activity modulation. J Pharmacol Exp Ther 348:324–335. doi:10.1124/jpet.113.206714

    Article  Google Scholar 

  • Cardaci S, Desideri E, Ciriolo MR (2012) Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr 44:17–29. doi:10.1007/s10863-012-9422-9427

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  Google Scholar 

  • El Sayed SM, El-Magd RM, Shishido Y, Chung SP, Diem TH, Sakai T, Watanabe H, Kagami S, Fukui K (2012a) 3-bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr 44:61–79. doi:10.1007/s10863-012-9409-4

    Article  Google Scholar 

  • El Sayed SM, Abou El-Magd RM, Shishido Y, Chung SP, Sakai T, Watanabe H, Kagami S, Fukui K (2012b) D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. Cancer Gene Ther 19:1–18. doi:10.1038/cgt.2011.59

    Article  Google Scholar 

  • El Sayed SM, Mohamed WG, Seddik MA, Ahmed AS, Mahmoud AG, Amer WH, Helmy Nabo MM, Hamed AR, Ahmed NS, Abd-Allah AA (2014) Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study. Chin J Cancer 33:356–364. doi:10.5732/cjc.013.10111

    CAS  Google Scholar 

  • Feng X, Zhang Y, Wang P, Liu Q, Wang X (2014) Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 13:1793–1803. doi:10.1039/c4pp00288a

    Article  CAS  Google Scholar 

  • Furtado CM, Marcondes MC, Sola-Penna M, de Souza ML, Zancan P (2012) Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis. PLoS One 7(2):e30462. doi:10.1371/journal.pone.0030462

    Article  CAS  Google Scholar 

  • Galina A (2014) Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity. Int J Biochem Cell Biol 54:266–271. doi:10.1016/j.biocel.2014.05.013

    Article  CAS  Google Scholar 

  • Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 67:4182–4189

    Article  CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R, Buijs M, Vossen JA, Tchernyshyov I, Cole RN, Syed LH, Rao PP, Ota S, Vali M (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 29:4909–4918

    CAS  Google Scholar 

  • Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF (2013) Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res 33:13–20

    CAS  Google Scholar 

  • Glick M, Biddle P, Jantzi J, Weaver S, Schirch D (2014) The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions. Biochem Biophys Res Commun 452:170–173. doi:10.1016/j.bbrc.2014.08.066

    Article  CAS  Google Scholar 

  • Golding JP, Wardhaugh T, Patrick L, Turner M, Phillips JB, Bruce JI, Kimani SG (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br J Cancer 109:976–982. doi:10.1038/bjc.2013.391

    Article  CAS  Google Scholar 

  • Hadzic T, Aykin-Burns N, Zhu Y, Coleman MC, Leick K, Jacobson GM, Spitz DR (2010) Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radic Biol Med 48:1024–1033. doi:10.1016/j.freeradbiomed.2010.01.018

    Article  CAS  Google Scholar 

  • Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM, Kim SJ, Park JH (2008) Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg Biomembr 40:607–618. doi:10.1007/s10863-008-9188-0

    Article  CAS  Google Scholar 

  • Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Article  CAS  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275. doi:10.1007/s10863-012-9417-4

    Article  CAS  Google Scholar 

  • Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL (2012) A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 44:163–170. doi:10.1007/s10863-012-9417-4

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Macchioni L, Davidescu M, Roberti R, Corazzi L (2014) The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria. J Bioenerg Biomembr 46:389–394. doi:10.1007/s10863-014-9577-5

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Mulet C, Lederer F (1977) Bromopyruvate as an affinity label for baker’s yeast flavocytochrome b2. Kinetic study of the inactivation reaction. Eur J Biochem 73:443–447

    Article  CAS  Google Scholar 

  • Pedersen PL (2012) (2012) 3-bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 44:1–6. doi:10.1007/s10863-012-9425-4

    Article  CAS  Google Scholar 

  • Pereira da Silva AP, El-Bacha T, Kyaw N, dos Santos RS, da-Silva WS, Almeida FC, Da Poian AT, Galina A (2009) Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem J 417:717–726. doi:10.1042/BJ20080805

  • Queirós O, Preto A, Pacheco A, Pinheiro C, Azevedo-Silva J, Moreira R, Pedro M, Ko YH, Pedersen PL, Baltazar F, Casal M (2012) Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr 44:141–153. doi:10.1007/s10863-012-9418-3

    Article  Google Scholar 

  • Rice-Evans C, Diplock AT, Symons MCR (1991) Techniques in free radical research. Elsevier, San Diego

    Google Scholar 

  • Sadowska-Bartosz I, Bartosz G (2013) Effect of 3-bromopyruvic acid on human erythrocyte antioxidant defense system. Cell Biol Int 37:1285–1290. doi:10.1002/cbin.10160

    Article  CAS  Google Scholar 

  • Senft AP, Dalton TP, Shertzer HG (2000) Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal Biochem 280:80–86

    Article  CAS  Google Scholar 

  • Shoshan MC (2012) 3-bromopyruvate: targets and outcomes. J Bioenerg Biomembr 44:7–15. doi:10.1007/s10863-012-9419-2

    Article  CAS  Google Scholar 

  • Valenti D, Vacca RA, de Bari L. (2015) 3-bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system. J Bioenerg Biomembr

  • Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP (2015) A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6:25677–25695. doi:10.18632/oncotarget.4499

    Article  Google Scholar 

  • Zancan P, Sola-Penna M, Furtado CM, Da Silva D (2010) Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab 10:372–378. doi:10.1016/j.ymgme.2010.04.006

    Article  Google Scholar 

  • Zhang Q, Zhang Y, Zhang P, Chao Z, Xia F, Jiang C, Zhang X, Jiang Z, Liu H (2014) Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer 5:100–112

    Google Scholar 

  • Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 89:452–465. doi:10.1016/j.freeradbiomed.2015.08.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 2012/07/B/NZ7/03618 from the National Science Centre in Poland. We are indebted to Miss Sabina Galiniak, M. Sc., for her help in statistical evaluation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Sadowska-Bartosz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiatkowska, E., Wojtala, M., Gajewska, A. et al. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. J Bioenerg Biomembr 48, 23–32 (2016). https://doi.org/10.1007/s10863-015-9637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9637-5

Keywords

Navigation