Skip to main content

Advertisement

Log in

Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In recent years, many findings have been presented about the potential benefit of statin therapy on diabetes-induced cardiovascular complications. Cardioprotective effects of statins were suggested to be mediated at least in part through inhibition of small GTPases, particularly those of the Rho family. The present study was designed to examine whether rosuvastatin can improve electrical remodeling and contractile dysfunction in type 1 diabetic rat heart via modulation of RhoA pathway. Type 1 diabetes was induced by single dose injection of STZ (50 mg/kg). One week after injection rosuvastatin (10 mg/kg/day) and sham treatment was given for 5 weeks in the diabetic rats, as well as in control groups. Shortening and Ca2+ transients were recorded in myocytes loaded with Fura2-AM. Membrane currents and Ca2+ transients were measured synchronously via whole-cell patch clamping. In untreated diabetic rats, relaxation of shortening and decay of the matched Ca2+ transients were prolonged. Fractional shortening and Ca2+ transients were also decreased. Rosuvastatin treatment reversed those changes. ICaL density did not change in either group but rosuvastatin recovered the loss of sarcoplasmic reticulum Ca2+ and Na+/Ca2+ exchange as evidenced from amplitude and decay of caffeine-induced Ca2+ transients, peak INCX and calculated sarcoplasmic reticulum Ca2+ content. Diabetes-induced attenuation of Ito and Isus was also reversed, whilst IK1 was unchanged in diabetes and unaffected by treatment. Rosuvastatin prevented the diabetes-induced increase in RhoA expression. Plasma cholesterol and triglyceride levels were higher in diabetic rats, but rosuvastatin reduced only the latter. In conclusion, HMG-CoA reductase inhibitor rosuvastatin can prevent diabetes-induced electrical and functional remodeling of heart due to inhibition of RhoA signalling rather than reduction of cholesterol level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham S, Osorio J, Homma S, Wang J, Thaker H, Liao J, Mital S (2004) Simvastatin preserves cardiac function in genetically determined cardiomyopathy. J Cardiovasc Pharmacol 43:454–461

    Article  CAS  Google Scholar 

  • Alvarez de Sotomayor M, Pérez-Guerrero C, Herrera M, Marhuenda E (2001) Effect of simvastatin on vascular smooth muscle responsiveness: involvement of Ca(2+) homeostasis. Eur J Pharmacol 415:217–224

    Article  CAS  Google Scholar 

  • Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    Article  CAS  Google Scholar 

  • Bito V, de Waard MC, Biesmans L, Lenaerts I, Ozdemir S, van Deel E, Abdel-Mottaleb Y, Driesen R, Holemans P, Duncker DJ, Sipido KR (2010) Early exercise training after myocardial infarction prevents contractile but not electrical remodelling or hypertrophy. Cardiovasc Res 86:72–81

    Article  CAS  Google Scholar 

  • Bode EF, Briston SJ, Overend CL, O’Neill SC, Trafford AW, Eisner DA (2011) Changes of SERCA activity have only modest effects on sarcoplasmic reticulum Ca2+ content in rat ventricular myocytes. J Physiol 589:4723–4729

    CAS  Google Scholar 

  • Bonetti P, Lerman L, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering–are they clinically relevant? Eur Heart J 24:225–248

    Article  CAS  Google Scholar 

  • Bulhak A, Roy J, Hedin U, Sjöquist P, Pernow J (2007) Cardioprotective effect of rosuvastatin in vivo is dependent on inhibition of geranylgeranyl pyrophosphate and altered RhoA membrane translocation. Am J Physiol Heart Circ Physiol 292:H3158–H3163

    Article  CAS  Google Scholar 

  • Cachero TG, Morielli AD, Peralta EG (1998) The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93:1077–1085

    Article  CAS  Google Scholar 

  • Calabrò P, Yeh E (2005) The pleiotropic effects of statins. Curr Opin Cardiol 20:541–546

    Article  Google Scholar 

  • Cameron N, Cotter M, Inkster M, Nangle M (2003) Looking to the future: diabetic neuropathy and effects of rosuvastatin on neurovascular function in diabetes models. Diabetes Res Clin Pract 61(Suppl 1):S35–S39

    Article  CAS  Google Scholar 

  • Choi K, Zhong Y, Hoit B, Grupp I, Hahn H, Dilly K, Guatimosim S, Lederer W, Matlib M (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283:H1398–H1408

    CAS  Google Scholar 

  • Choi EY, Chang W, Lim S, Song BW, Cha MJ, Kim HJ, Choi E, Jang Y, Chung N, Hwang KC (2010) Rosuvastatin inhibits norepinephrine-induced cardiac hypertrophy via suppression of Gh. Eur J Pharmacol 627:56–62

    Article  CAS  Google Scholar 

  • Colhoun H, Betteridge D, Durrington P, Hitman G, Neil H, Livingstone S, Thomason M, Fuller J (2005) Rapid emergence of effect of atorvastatin on cardiovascular outcomes in the Collaborative Atorvastatin Diabetes Study (CARDS). Diabetologia 48:2482–2485

    Article  CAS  Google Scholar 

  • Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Lin S, Sahai A, Kanwar YS (2002) 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: Implications for diabetic nephropathy. Proc Natl Acad Sci U S A 99:8301–8305

    Article  CAS  Google Scholar 

  • Duan J, Zhang HY, Adkins SD, Ren BH, Norby FL, Zhang X, Benoit JN, Epstein PN, Ren J (2003) Impaired cardiac function and IGF-I response in myocytes from calmodulin-diabetic mice: role of Akt and RhoA. Am J Physiol Endocrinol Metab 284:E366–E376

    CAS  Google Scholar 

  • Gómez-Garre D, González-Rubio ML, Muñoz-Pacheco P, Caro-Vadillo A, Aragoncillo P, Fernández-Cruz A (2010) Rosuvastatin added to standard heart failure therapy improves cardiac remodelling in heart failure rats with preserved ejection fraction. Eur J Heart Fail 12:903–912

    Article  Google Scholar 

  • Hayat S, Patel B, Khattar R, Malik R (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond) 107:539–557

    Article  CAS  Google Scholar 

  • Heinzel FR, MacQuaide N, Biesmans L, Sipido K (2011) Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. J Mol Cell Cardiol 50:390–400

    Article  CAS  Google Scholar 

  • Hill B, Dixon J, Sturek M (2001) Effect of atorvastatin on intracellular calcium uptake in coronary smooth muscle cells from diabetic pigs fed an atherogenic diet. Atherosclerosis 159:117–124

    Article  CAS  Google Scholar 

  • Horwich T, MacLellan W, Fonarow G (2004) Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure. J Am Coll Cardiol 43:642–648

    Article  CAS  Google Scholar 

  • Ikeda Y, Young L, Lefer A (2003) Rosuvastatin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. J Cardiovasc Pharmacol 41:649–656

    Article  CAS  Google Scholar 

  • Jourdon P, Feuvray D (1993) Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J Physiol 470:411–429

    CAS  Google Scholar 

  • Kang L, Fang Q, Hu S (2007) Regulation of phospholamban and sarcoplasmic reticulum Ca2+−ATPase by atorvastatin: implication for cardiac hypertrophy. Arch Pharm Res 30:596–602

    Article  CAS  Google Scholar 

  • Kaye DM, Wiviott SD, Kelly RA (1999) Activation of nitric oxide synthase (NOS3) by mechanical activity alters contractile activity in a Ca2+−independent manner in cardiac myocytes: role of troponin I phosphorylation. Biochem Biophys Res Commun 256:398–403

    Article  CAS  Google Scholar 

  • Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, Kobayashi T, Matsuoka H (2002) Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res 55:757–767

    Article  CAS  Google Scholar 

  • Kones R (2010) Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease–a perspective. Drug Des Devel Ther 4:383–413

    Article  CAS  Google Scholar 

  • Kurian K, Rai P, Sankaran S, Jacob B, Chiong J, Miller A (2006) The effect of statins in heart failure: beyond its cholesterol-lowering effect. J Card Fail 12:473–478

    Article  CAS  Google Scholar 

  • Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Györke S, Carnes CA (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293:R1787–R1797

    Article  CAS  Google Scholar 

  • Lefer A, Campbell B, Shin Y, Scalia R, Hayward R, Lefer D (1999) Simvastatin preserves the ischemic-reperfused myocardium in normocholesterolemic rat hearts. Circulation 100:178–184

    Article  CAS  Google Scholar 

  • Levine G, Keaney JJ, Vita J (1995) Cholesterol reduction in cardiovascular disease. Clinical benefits and possible mechanisms. N Engl J Med 332:512–521

    Article  CAS  Google Scholar 

  • Li L, Matsuoka I, Suzuki Y, Watanabe Y, Ishibashi T, Yokoyama K, Maruyama Y, Kimura J (2002) Inhibitory effect of fluvastatin on lysophosphatidylcholine-induced nonselective cation current in Guinea pig ventricular myocytes. Mol Pharmacol 62:602–607

    Article  CAS  Google Scholar 

  • Li J, Zhu H, Shen E, Wan L, Arnold JM, Peng T (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59:2033–2042

    Article  CAS  Google Scholar 

  • Lin G, Craig G, Zhang L, Yuen V, Allard M, McNeill J, MacLeod K (2007) Acute inhibition of Rho-kinase improves cardiac contractile function in streptozotocin-diabetic rats. Cardiovasc Res 75:51–58

    Article  CAS  Google Scholar 

  • Ozdemir S, Ugur M, Gürdal H, Turan B (2005) Treatment with AT(1) receptor blocker restores diabetes-induced alterations in intracellular Ca(2+) transients and contractile function of rat myocardium. Arch Biochem Biophys 435:166–174

    Article  CAS  Google Scholar 

  • Ozdemir S, Bito V, Holemans P, Vinet L, Mercadier JJ, Varro A, Sipido KR (2008) Pharmacological inhibition of na/ca exchange results in increased cellular Ca2+ load attributable to the predominance of forward mode block. Circ Res 102:1398–1405

    Article  CAS  Google Scholar 

  • Porter KE, Turner NA (2011) Statins and myocardial remodelling: cell and molecular pathways. Expert Rev Mol Med 13:e22

    Article  Google Scholar 

  • Ren J, Fang C (2005) Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin 26:279–285

    Article  CAS  Google Scholar 

  • Ren J, Duan J, Thomas DP, Yang X, Sreejayan N, Sowers JR, Leri A, Kajstura J, Gao F, Anversa P (2008) IGF-I alleviates diabetes-induced RhoA activation, eNOS uncoupling, and myocardial dysfunction. Am J Physiol Regul Integr Comp Physiol 294:R793–R802

    Article  CAS  Google Scholar 

  • Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW, Ross J, Chien KR, Brown JH (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103:1627–1634

    Article  CAS  Google Scholar 

  • Schäfer A, Fraccarollo D, Vogt C, Flierl U, Hemberger M, Tas P, Ertl G, Bauersachs J (2007) Improved endothelial function and reduced platelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in rats with streptozotocin-induced diabetes mellitus. Biochem Pharmacol 73:1367–1375

    Article  Google Scholar 

  • Shao CH, Rozanski GJ, Patel KP, Bidasee KR (2007) Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J Mol Cell Cardiol 42:234–246

    Article  CAS  Google Scholar 

  • Shimoni Y, Firek L, Severson D, Giles W (1994) Short-term diabetes alters K+ currents in rat ventricular myocytes. Circ Res 74:620–628

    Article  CAS  Google Scholar 

  • Shoji H, Takahashi S, Okabe E (1999) Intracellular effects of nitric oxide on force production and Ca2+ sensitivity of cardiac myofilaments. Antioxid Redox Signal 1:509–521

    Article  CAS  Google Scholar 

  • Soliman H, Craig GP, Nagareddy P, Yuen VG, Lin G, Kumar U, McNeill JH, Macleod KM (2008) Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovasc Res 79:322–330

    Article  CAS  Google Scholar 

  • Stølen TO, Høydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisløff U (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536

    Article  Google Scholar 

  • Tang Q, Huang J, Qian H, Chen L, Wang T, Wang H, Shen D, Wu H, Xiong R (2007) Antiarrhythmic effect of atorvastatin on autoimmune myocarditis is mediated by improving myocardial repolarization. Life Sci 80:601–608

    Article  CAS  Google Scholar 

  • Tesfamariam B, Frohlich B, Gregg R (1999) Differential effects of pravastatin, simvastatin, and atorvastatin on Ca2+ release and vascular reactivity. J Cardiovasc Pharmacol 34:95–101

    Article  CAS  Google Scholar 

  • Vaquero M, Caballero R, Gómez R, Núñez L, Tamargo J, Delpón E (2007) Effects of atorvastatin and simvastatin on atrial plateau currents. J Mol Cell Cardiol 42:931–945

    Article  CAS  Google Scholar 

  • Vlasblom R, Muller A, Beckers CM, van Nieuw Amerongen GP, Zuidwijk MJ, van Hardeveld C, Paulus WJ, Simonides WS (2009) RhoA-ROCK signaling is involved in contraction-mediated inhibition of SERCA2a expression in cardiomyocytes. Pflugers Arch 458:785–793

    Article  CAS  Google Scholar 

  • Xu H, Guo W, Nerbonne JM (1999a) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113:661–678

    Article  CAS  Google Scholar 

  • Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM (1999b) Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit. Circ Res 85:623–633

    Article  CAS  Google Scholar 

  • Yang Y, Mou Y, Hu SJ, Fu M (2009) Beneficial effect of rosuvastatin on cardiac dysfunction is associated with alterations in calcium-regulatory proteins. Eur J Heart Fail 11:6–13

    Article  CAS  Google Scholar 

  • Yao L, Chen GP, Lu X, Zheng LR, Mou Y, Hu SJ (2009) Effects of atorvastatin on calcium-regulating proteins: a possible mechanism to repair cardiac dysfunction in spontaneously hypertensive rats. Basic Res Cardiol 104:258–268

    Article  CAS  Google Scholar 

  • Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088

    Article  CAS  Google Scholar 

  • Zheng X, Hu S (2005) Effects of simvastatin on cardiac performance and expression of sarcoplasmic reticular calcium regulatory proteins in rat heart. Acta Pharmacol Sin 26:696–704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semir Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, N., Yaras, N., Ozmen, A. et al. Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr 45, 343–352 (2013). https://doi.org/10.1007/s10863-013-9514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9514-z

Keywords

Navigation