Skip to main content

Advertisement

Log in

Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze quantitatively cellular respiration in intraoperational tissue samples taken from human breast cancer (BC) patients. We used oxygraphy and the permeabilized cell techniques in combination with Metabolic Control Analysis (MCA) to measure a corresponding flux control coefficient (FCC). The activity of all components of ATP synthasome, and respiratory chain complexes was found to be significantly increased in human BC cells in situ as compared to the adjacent control tissue. FCC(s) were determined upon direct activation of respiration with exogenously-added ADP and by titrating the complexes with their specific inhibitors to stepwise decrease their activity. MCA showed very high sensitivity of all complexes and carriers studied in human BC cells to inhibition as compared to mitochondria in normal oxidative tissues. The sum of FCC(s) for all ATP synthasome and respiratory chain components was found to be around 4, and the value exceeded significantly that for normal tissue (close to 1). In BC cells, the key sites of the regulation of respiration are Complex IV (FCC = 0.74), ATP synthase (FCC = 0.61), and phosphate carrier (FCC = 0.60); these FCC(s) exceed considerably (~10-fold) those for normal oxidative tissues. In human BC cells, the outer mitochondrial membrane is characterized by an increased permeability towards adenine nucleotides, the mean value of the apparent Km for ADP being equal to 114.8 ± 13.6 μM. Our data support the two-compartment hypothesis of tumor metabolism, the high sum of FCC(s) showing structural and functional organization of mitochondrial respiratory chain and ATP synthasome as supercomplexes in human BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84(6):1014–1020

    Article  CAS  Google Scholar 

  • Anmann T, Guzun R, Beraud N, Pelloux S, Kuznetsov AV, Kogerman L et al (2006) Different kinetics of the regulation of respiration in permeabilized cardiomyocytes and in HL-1 cardiac cells. Importance of cell structure/organization for respiration regulation. Biochim Biophys Acta 1757(12):1597–1606

    Article  CAS  Google Scholar 

  • Atsumi T, Chesney J, Metz C, Leng L, Donnelly S, Makita Z et al (2002) High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res 62(20):5881–5887

    CAS  Google Scholar 

  • Balinsky D, Platz CE, Lewis JW (1983) Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res 43(12 Part 1):5895–5901

    CAS  Google Scholar 

  • Balinsky D, Platz CE, Lewis JW (1984) Enzyme activities in normal, dysplastic, and cancerous human breast tissues. J Natl Cancer Inst 72(2):217–224

    CAS  Google Scholar 

  • Bauer MK, Schubert A, Rocks O, Grimm S (1999) Adenine nucleotide translocase-1, a component of the permeability transition pore, can dominantly induce apoptosis. J Cell Biol 147(7):1493–1502

    Article  CAS  Google Scholar 

  • Bera S, Wallimann T, Ray S, Ray M (2008) Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells. FEBS J 275(23):5899–5909

    Article  CAS  Google Scholar 

  • Bianchi MS, Bianchi NO, Bailliet G (1995) Mitochondrial DNA mutations in normal and tumor tissues from breast cancer patients. Cytogenet Cell Genet 71(1):99–103

    Article  CAS  Google Scholar 

  • Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly. J Biol Chem 279(35):36562–36569

    Article  CAS  Google Scholar 

  • Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514

    Article  CAS  Google Scholar 

  • Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Bassilian S et al (1997) Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res 57(19):4242–4248

    CAS  Google Scholar 

  • Bustamante E, Pedersen PL (1980) Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties. Biochemistry 19(22):4972–4977

    Article  CAS  Google Scholar 

  • Chen Z, Zhang H, Lu W, Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta (BBA) - Bioenerg 178(5):553–560

    Article  CAS  Google Scholar 

  • Chen J, Yao Y, Gong C, Yu F, Su S, Chen J et al (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19(4):541–555

    Article  CAS  Google Scholar 

  • Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr, Joseph J et al (2012) Mitochondria targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 72(10):2634–2644

    Article  CAS  Google Scholar 

  • Chevrollier A, Loiseau D, Chabi B, Renier G, Douay O, Malthiery Y et al (2005) ANT2 isoform required for cancer cell glycolysis. J Bioenerg Biomembr 37(5):307–316

    Article  CAS  Google Scholar 

  • Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta (BBA) - Bioenerg 1807(6):562–567

    Article  CAS  Google Scholar 

  • Coy JF, Dressler D, Wilde J, Schubert P (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab 51(5–6):257–273

    CAS  Google Scholar 

  • Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Annu Rev Med 53:89–112

    Article  CAS  Google Scholar 

  • de Groof AJ, te Lindert MM, van Dommelen MM, Wu M, Willemse M, Smift AL et al (2009) Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 8:54

    Article  CAS  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci 104(49):19345–19350

    Article  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61

    Article  CAS  Google Scholar 

  • DeLuca M, Hall N, Rice R, Kaplan NO (1981) Creatine kinase isozymes in human tumors. Biochem Biophys Res Commun 99(1):189–195

    Article  CAS  Google Scholar 

  • Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK (2005) Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 4(12):1367–1373

    Article  CAS  Google Scholar 

  • Dolce V, Scarcia P, Iacopetta D, Palmieri F (2005) A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Lett 579(3):633–637

    Article  CAS  Google Scholar 

  • Dorner A, Schultheiss HP (2007) Adenine nucleotide translocase in the focus of cardiovascular diseases. Trends Cardiovasc Med 17(8):284–290

    Article  CAS  Google Scholar 

  • Dudkina NV, Sunderhaus S, Boekema EJ, Braun HP (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40(5):419–424

    Article  CAS  Google Scholar 

  • Eimre M, Paju K, Pelloux S, Beraud N, Roosimaa M, Kadaja L et al (2008) Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777(6):514–524

    Article  CAS  Google Scholar 

  • Fell D (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  • Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592

    Article  CAS  Google Scholar 

  • Gabriel A-M (2009) Electron microscopy morphology of the mitochondrial network in human cancer. Int J Biochem Cell Biol 41(10):2062–2068

    Article  CAS  Google Scholar 

  • Garedew A, Henderson SO, Moncada S (2010) Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death. Cell Death Differ 17(10):1540–1550

    Article  CAS  Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753

    CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    Article  CAS  Google Scholar 

  • Gellerich F, Saks VA (1982) Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem Biophys Res Commun 105(4):1473–1481

    Article  CAS  Google Scholar 

  • Gellerich FN, Kunz WS, Bohnensack R (1990) Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett 274(1–2):167–170

    Article  CAS  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI et al (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777(7–8):740–746

    CAS  Google Scholar 

  • Ghosh S, Kaushik DK, Gomes J, Nayeem S, Deep S, Basu A (2010) Changes in cytosolic Ca2+ levels correspond to fluctuations of lactate levels in crosstalk of astrocyte-neuron cell lines. Indian J Exp Biol 48(6):529–537

    CAS  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257(6):2754–2757

    CAS  Google Scholar 

  • Guzun R, Karu-Varikmaa M, Gonzalez-Granillo M, Kuznetsov AV, Michel L, Cottet-Rousselle C et al (2011) Mitochondria-cytoskeleton interaction: distribution of beta-tubulins in cardiomyocytes and HL-1 cells. Biochim Biophys Acta 1807(4):458–469

    Article  CAS  Google Scholar 

  • Heddi A, Lestienne P, Wallace DC, Stepien G (1994) Steady state levels of mitochondrial and nuclear oxidative phosphorylation transcripts in Kearns-Sayre syndrome. Biochim Biophys Acta 1226(2):206–212

    Article  CAS  Google Scholar 

  • Heinrich R (1985) Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes. Biomed Biochim Acta 44(6):913–927

    CAS  Google Scholar 

  • Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ et al (2006) Comparison of β-tubulin mRNA and protein levels in 12 human cancer cell lines. Cell Motil Cytoskeleton 63(1):41–52

    Article  CAS  Google Scholar 

  • Holtzman D, Togliatti A, Khait I, Jensen F (1998) Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr Res 44(3):410–414

    Article  CAS  Google Scholar 

  • Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43(5):255–264

    Article  CAS  Google Scholar 

  • Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M et al (2004) Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378(Pt 1):17–20

    Article  CAS  Google Scholar 

  • Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM et al (2005) Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis 26(12):2095–2104

    Article  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  Google Scholar 

  • Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta (BBA) - Bioenerg 1807(6):552–561

    Article  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    CAS  Google Scholar 

  • Kanemitsu F, Kawanishi I, Mizushima J, Okigaki T (1984) Mitochondrial creatine kinase as a tumor-associated marker. Clin Chim Acta 138(2):175–183

    Article  CAS  Google Scholar 

  • Kholodenko BN, Demin OV, Westerhoff HV (1993) ‘Channelled’ pathways can be more sensitive to specific regulatory signals. FEBS Lett 320(1):75–78

    Article  CAS  Google Scholar 

  • Kholodenko BN, Cascante M, Westerhoff HV (1994) Control theory of metabolic channelling. Mol Cell Biochem 133–134:313–331

    Article  Google Scholar 

  • Koval JA, DeFronzo RA, O’Doherty RM, Printz R, Ardehali H, Granner DK et al (1998) Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am J Physiol Endocrinol Metab 274(2):E304–E308

    CAS  Google Scholar 

  • Kulawiec M, Ayyasamy V, Singh KK (2009) p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog 8:8

    Article  CAS  Google Scholar 

  • Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z et al (1996) Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241(3):909–915

    Article  CAS  Google Scholar 

  • Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: Possible physiological role? Biochim Biophys Acta (BBA) - Bioenerg 1757(5–6):686–691

    Article  CAS  Google Scholar 

  • Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3(6):965–976

    Article  CAS  Google Scholar 

  • Le Bras M, Borgne-Sanchez A, Touat Z, El Dein OS, Deniaud A, Maillier E et al (2006) Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res 66(18):9143–9152

    Article  CAS  Google Scholar 

  • Leandro-Garcia LJ, Leskela S, Landa I, Montero-Conde C, Lopez-Jimenez E, Leton R et al (2010) Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 67(4):214–223

    CAS  Google Scholar 

  • Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41(10):1750–1772

    Article  CAS  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12(8):961–1008

    Article  CAS  Google Scholar 

  • Lenaz G, Baracca A, Barbero G, Bergamini C, Dalmonte ME, Del Sole M et al (2010) Mitochondrial respiratory chain super-complex I–III in physiology and pathology. Biochim Biophys Acta (BBA) - Bioenerg 1797(6–7):633–640

    Article  CAS  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830

    Article  CAS  Google Scholar 

  • Marin-Hernandez A, Rodriguez-Enriquez S, Vital-Gonzalez PA, Flores-Rodriguez FL, Macias-Silva M, Sosa-Garrocho M et al (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273(9):1975–1988

    Article  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab 15(1):4–5

    Article  CAS  Google Scholar 

  • Mazzio E, Soliman Y, Soliman K (2010) Variable toxicological response to the loss of OXPHOS through 1-methyl-4-phenylpyridinium-induced mitochondrial damage and anoxia in diverse neural immortal cell lines. Cell Biol Toxicol 26(6):527–539

    Article  CAS  Google Scholar 

  • Monge C, Beraud N, Tepp K, Pelloux S, Chahboun S, Kaambre T et al (2009) Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Can J Physiol Pharmacol 87(4):318–326

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Devars S, Lopez-Gomez F, Uribe A, Corona N (1991) Distribution of control of oxidative phosphorylation in mitochondria oxidizing NAD-linked substrates. Biochim Biophys Acta 1060(3):284–292

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Olin-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008:597913

    Article  CAS  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Gallardo-Perez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10(6):626–639

    Article  CAS  Google Scholar 

  • Nakashima RA, Paggi MG, Scott LJ, Pedersen PL (1988) Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Cancer Res 48(4):913–919

    CAS  Google Scholar 

  • Neeman M, Degani H (1989) Metabolic studies of estrogen- and tamoxifen-treated human breast cancer cells by nuclear magnetic resonance spectroscopy. Cancer Res 49(3):589–594

    CAS  Google Scholar 

  • Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    Article  CAS  Google Scholar 

  • Pastorino J, Hoek J (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40(3):171–182

    Article  CAS  Google Scholar 

  • Patra S, Bera S, SinhaRoy S, Ghoshal S, Ray S, Basu A et al (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275(12):3236–3247

    Article  CAS  Google Scholar 

  • Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    CAS  Google Scholar 

  • Pedersen PL (2007a) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222

    Article  CAS  Google Scholar 

  • Pedersen PL (2007b) The cancer cell’s “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12

    Article  CAS  Google Scholar 

  • Pedersen PL (2007c) Transport ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and disease. J Bioenerg Biomembr 39(5–6):349–355

    Article  CAS  Google Scholar 

  • Pedersen PL (2008) Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment’s roles together with hexokinase-2 in the “Warburg effect” in cancer. J Bioenerg Biomembr 40(3):123–126

    Article  CAS  Google Scholar 

  • Pedersen PL (2012) 3-bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 44(1):1–6

    Article  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  CAS  Google Scholar 

  • Pratt R, Vallis LM, Lim CW, Chisnall WN (1987) Mitochondrial creatine kinase in cancer patients. Pathology 19(2):162–165

    Article  CAS  Google Scholar 

  • Quarato G, Piccoli C, Scrima R, Capitanio N (2011) Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. Biochim Biophys Acta 1807(9):1114–1124

    Article  CAS  Google Scholar 

  • Rapoport TA, Heinrich R, Jacobasch G, Rapoport S (1974) A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur J Biochem 42(1):107–120

    Article  CAS  Google Scholar 

  • Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H (2003) Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer 107(2):177–182

    Article  CAS  Google Scholar 

  • Robey RB, Raval BJ, Ma J, Santos AV (2000) Thrombin is a novel regulator of hexokinase activity in mesangial cells. Kidney Int 57(6):2308–2318

    Article  CAS  Google Scholar 

  • Rogers S, Docherty SE, Slavin JL, Henderson MA, Best JD (2003) Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer Lett 193(2):225–233

    Article  CAS  Google Scholar 

  • Roguljic A, Safwan T, Separovic V (1989) Creatine kinase-BB activity in malignant tumors and in sera from patients with malignant diseases. Tumori 75(6):537–541

    CAS  Google Scholar 

  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat J (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347(Pt 1):45–53

    Article  CAS  Google Scholar 

  • Rostovtseva T, Bezrukov S (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40(3):163–170

    Article  CAS  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM et al (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105(48):18746–18751

    Article  CAS  Google Scholar 

  • Safa M, Zand H, Mousavizadeh K, Kazemi A, Bakhshayesh M, Hayat P (2010) Elevation of cyclic AMP causes an imbalance between NF-[kappa]B and p53 in NALM-6 cells treated by doxorubicin. FEBS Lett 584(15):3492–3498

    Article  CAS  Google Scholar 

  • Saks VA, Belikova YO, Kuznetsov AV (1991) In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074(2):302–311

    Article  CAS  Google Scholar 

  • Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T et al (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184(1–2):81–100

    Article  CAS  Google Scholar 

  • Schmidt M, Voelker HU, Kapp M, Krockenberger M, Dietl J, Kammerer U (2010) Glycolytic phenotype in breast cancer: activation of Akt, up-regulation of GLUT1, TKTL1 and down-regulation of M2PK. J Cancer Res Clin Oncol 136(2):219–225

    Article  CAS  Google Scholar 

  • Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia 5(2):135–145

    CAS  Google Scholar 

  • Seppet EK, Eimre M, Anmann T, Seppet E, Piirsoo A, Peet N et al (2006) Structure-function relationships in the regulation of energy transfer between mitochondria and ATPases in cardiac cells. Exp Clin Cardiol 11(3):189–194

    CAS  Google Scholar 

  • Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267(21):14592–14597

    CAS  Google Scholar 

  • Tan DJ, Bai RK, Wong LJ (2002) Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62(4):972–976

    CAS  Google Scholar 

  • Tepp K, Timohhina N, Chekulayev V, Shevchuk I, Kaambre T, Saks V (2010) Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes - experimental study. Acta Biochim Pol 57(4):421–430

    CAS  Google Scholar 

  • Tepp K, Shevchuk I, Chekulayev V, Timohhina N, Kuznetsov AV, Guzun R et al (2011a) High efficiency of energy flux controls within mitochondrial interactosome in cardiac intracellular energetic units. Biochim Biophys Acta (BBA) - Bioenerg 1807(12):1549–1561

    Article  CAS  Google Scholar 

  • Tepp K, Shevchuk I, Chekulayev V, Timohhina N, Saks V, Kaambre T (2011b) High efficiency of energy flux control within mitochondrial interactosome in cardiac cell. FEBS J 278:377–377

    Google Scholar 

  • Thompson RJ, Rubery ED, Jones HM (1980) Radioimmunoassay of serum creatine kinase-BB as a tumour marker in breast cancer. Lancet 2(8196):673–675

    Article  CAS  Google Scholar 

  • Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H et al (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome. J Bioenerg Biomembr 41(3):259–275

    Article  CAS  Google Scholar 

  • Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM et al (2006) Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Gene Chromosome Cancer 45(7):629–638

    Article  CAS  Google Scholar 

  • Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793(1):117–124

    Article  CAS  Google Scholar 

  • Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  Google Scholar 

  • Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Uber den stoffwechsel der carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Westerhoff HV, Kolodkin A, Conradie R, Wilkinson SJ, Bruggeman FJ, Krab K et al (2009a) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58(1–2):7–34

    Article  Google Scholar 

  • Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma M et al (2009b) Systems biology: the elements and principles of life. FEBS Lett 583(24):3882–3890

    Article  CAS  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A et al (2011a) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10(23):4047–4064

    Article  CAS  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK et al (2011b) Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10(11):1772–1783

    Article  CAS  Google Scholar 

  • Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R et al (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11(6)

  • Xu R, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621

    CAS  Google Scholar 

  • Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15(6B):2895–2898

    CAS  Google Scholar 

  • Zamora M, Granell M, Mampel T, Vinas O (2004) Adenine nucleotide translocase 3 (ANT3) overexpression induces apoptosis in cultured cells. FEBS Lett 563(1–3):155–160

    Article  CAS  Google Scholar 

  • Zancan P, Sola-Penna M, Furtado CM, Da Silva D (2010) Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol Genet Metab 100(4):372–378

    Article  CAS  Google Scholar 

  • Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL et al (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71(13):4585–4597

    Article  CAS  Google Scholar 

  • Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuuli Kaambre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaambre, T., Chekulayev, V., Shevchuk, I. et al. Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44, 539–558 (2012). https://doi.org/10.1007/s10863-012-9457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9457-9

Keywords

Navigation