Skip to main content
Log in

Cardioprotective effect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

We have previously shown that chronic treatment with propranolol had beneficial effects on heart function in rats during increasing-age in a gender-dependent manner. Herein, we hypothesize that propranolol would improve cardiac function in diabetic cardiomyopathy and investigated the benefits of chronic oral administration of propranolol on the parameters of Ca2+ signaling in the heart of streptozotocin-diabetic rats. Male diabetic rats received propranolol (25 mg/kg, daily) for 12 weeks, 1 week after diabetes induction. Treatment of the diabetic rats with propranolol did not produce a hypoglycaemic effect whereas it attenuated the increased cell size. Basal and β-agonist response levels of left ventricular developed pressure were significantly higher in propranolol-treated diabetic rats relative to untreated diabetics while left ventricular end diastolic pressure of the treated diabetics was comparable to the controls. Propranolol treatment normalized also the prolongation of the action potential in papillary muscles from the diabetic rat hearts. This treatment attenuated the parameters of Ca2+ transients, depressed Ca2+ loading of the sarcoplasmic reticulum, and of the basal intracellular Ca2+ level of diabetic cardiomyocytes. Furthermore, Western blot data indicated that the diabetes-induced alterations in the cardiac ryanodine receptor Ca2+ release channel’s hyperphosphorylation decreased the FKBP12.6 protein level. Also, the high phosphorylated levels of PKA and CaMKII were prevented with propranolol treatment. Chronic treatment with propranolol seems to prevent diabetes-related changes in heart function by controlling intracellular Ca2+ signaling and preventing the development of left ventricular remodeling in diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmet I, Krawczyk M, Zhu W, Woo AY, Morrell C, Poosala S, Xiao RP, Lakatta EG, Talan MI (2008) Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J Pharmacol Exp Ther 325(2):491–499

    Article  CAS  Google Scholar 

  • Angeli F, Verdecchia P, Karthikeyan G, Mazzotta G, Gentile G, Reboldi G (2010) ß-blockers reduce mortality in patients undergoing high-risk non-cardiacsurgery. Am J Cardiovasc Drugs 10(4):247–259

    Article  Google Scholar 

  • Aydemir-Koksoy A, Bilginoglu A, Sariahmetoglu M, Schulz R, Turan B (2010) Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. J Nutr Biochem 21(9):827–833

    Article  CAS  Google Scholar 

  • Bidasee KR, Nallani K, Besch HR Jr, Dincer UD (2003) Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther 305(3):989–998

    Article  CAS  Google Scholar 

  • Bilginoglu A, Seymen A, Tuncay E, Zeydanli E, Aydemir-Koksoy A, Turan B (2009) Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. CardiovascToxicol 9(1):21–29

    CAS  Google Scholar 

  • Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283(4):H1398–H1408

    CAS  Google Scholar 

  • Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100(22):2210–2212

    CAS  Google Scholar 

  • Conlon D, Johnston A, O’Malley K, Turner P, Kilfeather S (1995) Effect of ageing and propranolol administration on myocardial beta-adrenoceptor receptor function in mature rats. Eur J Pharmacol 289(2):283–290

    Article  CAS  Google Scholar 

  • Djanani A, Kaneider NC, Meierhofer C, Sturn D, Dunzendorfer S, Allmeier H, Wiedermann CJ (2003) Inhibition of neutrophil migration and oxygen free radical release by metipranolol and timolol. Pharmacology 68(4):198–203

    Article  CAS  Google Scholar 

  • Doi M, Yano M, Kobayashi S, Kohno M, Tokuhisa T, Okuda S, Suetsugu M, Hisamatsu Y, Ohkusa T, Kohno M, Matsuzaki M (2002) Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 105(11):1374–1379

    Article  CAS  Google Scholar 

  • Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenblick EH (1980) Altered myocardial mechanics in diabetic rats. Circ Res 47(6):922–933

    CAS  Google Scholar 

  • Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244(6):E528–E535

    CAS  Google Scholar 

  • Guatimosim S, Dilly K, Santana LF, SaleetJafri M, Sobie EA, Lederer WJ (2002) Local Ca(2+) signaling and EC coupling in heart: Ca(2+) sparks and the regulation of the [Ca(2+)](i) transient. J Mol Cell Cardiol 34(8):941–950

    Article  CAS  Google Scholar 

  • Hjalmarson A, Goldstein S, Fagerberg B et al (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT-HF). MERIT-HF study group. JAMA 283(10):1295–1302

    Article  CAS  Google Scholar 

  • Kandilci HB, Tuncay E, Zeydanli EN, Sozmen NN, Turan B (2011) Age-related regulation of excitation-contraction coupling in rat heart. J Physiol Biochem 67(3):317–330

    Google Scholar 

  • Kubo H, Margulies KB, Piacentino V 3rd, Gaughan JP, Houser SR (2001) Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 104(9):1012–1018

    Article  CAS  Google Scholar 

  • López-López JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268(5213):1042–1045

    Article  Google Scholar 

  • Magyar J, Rusznák Z, Szentesi P, Szûcs G, Kovács L (1992) Action potentials and potassium currents in rat ventricular muscle during experimental diabetes. J Mol Cell Cardiol 24(8):841–853

    Article  CAS  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  CAS  Google Scholar 

  • Metra M, Covolo L, Pezzali N et al (2010) Role of beta-adrenergic receptor gene polymorphisms in the long-term effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc Drugs Ther 24(1):49–60

    Article  CAS  Google Scholar 

  • Miyamoto N, Izumi H, Miyamoto R, Kubota T, Tawara A, Sasaguri Y, Kohno K (2009) Nipradilol and timolol induce Foxo3a and peroxiredoxin 2 expression and protect trabecular meshwork cells from oxidative stress. Invest Ophthalmol Vis Sci 50(6):2777–2784

    Article  Google Scholar 

  • Mochizuki M, Yano M, Oda T, Tateishi H, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2007) Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J Am Coll Cardiol 49(16):1722–1732

    Article  CAS  Google Scholar 

  • Pierce GN, Kutryk MJ, Dhalla NS (1983) Alterations in Ca2+ binding by and composition of the cardiac sarcolemmal membrane in chronic diabetes. Proc NatlAcadSci USA 80(17):5412–5416 [PubMed: 6577435]

    Article  CAS  Google Scholar 

  • Reiken S, Wehrens XH, Vest JA, Barbone A, Klotz S, Mancini D, Burkhoff D, Marks AR (2003) Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation 107(19):2459–2466

    Article  CAS  Google Scholar 

  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602

    Article  CAS  Google Scholar 

  • Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, Wronska A, Dura M, Chen BX, Marks AR (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J Clin Invest 120(12):4375–4387

    Article  CAS  Google Scholar 

  • Sharma V, Dhillon P, Wambolt R, Parsons H, Brownsey R, Allard MF, McNeill JH (2008) Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Am J Physiol Heart Circ Physiol 294(4):H1609–H1620

    Article  CAS  Google Scholar 

  • Sozmen NN, Tuncay E, Bilginoglu A, Turan B (2011) Profound cardioprotection with timolol in a female rat model of aging-related altered left ventricular function. Can J Physiol Pharmacol 89(4):277–288

    Article  CAS  Google Scholar 

  • Tuncay E, Seymen AA, Tanriverdi E, Yaras N, Tandogan B, Ulusu NN, Turan B (2007) Gender related differential effects of omega-3E treatment on diabetes-induced left ventricular dysfunction. Mol Cell Biochem 304(1–2):255–263

    Article  CAS  Google Scholar 

  • Tuncay E, Seymen AA, Sam P, Gurdal H, Turan B (2009) Effects of beta-adrenergic receptor blockers on cardiac function: a comparative study in male versus female rats. Can J Physiol Pharmacol 87(4):310–317

    Article  CAS  Google Scholar 

  • Turan B, Désilets M, Açan LN, Hotomaroglu O, Vannier C, Vassort G (1996) Oxidative effects of selenite on rat ventricular contractility and Ca movements. Cardiovasc Res 32(2):351–361

    Article  CAS  Google Scholar 

  • Ulusu NN, Turan B (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 103(3):207–216

    Article  CAS  Google Scholar 

  • Wang R, Miura T, Harada N, Kametani R, Shibuya M, Fukagawa Y, Kawamura S, Ikeda Y, Hara M, Matsuzaki M (2006) Pleiotropic effects of the beta-adrenoceptor blocker carvedilol on calcium regulation during oxidative stress-induced apoptosis in cardiomyocytes. J Pharmacol Exp Ther 318(1):45–52

    Article  CAS  Google Scholar 

  • Wehrens XH, Marks AR (2003) Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem Sci 28(12):671–678

    Article  CAS  Google Scholar 

  • Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54(11):3082–3088

    Article  CAS  Google Scholar 

  • Yaras N, Tuncay E, Purali N, Sahinoglu B, Vassort G, Turan B (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Physiol Heart Circ Physiol 293(6):H3584–H3592 [PubMed: 17890429]

    Article  CAS  Google Scholar 

  • Yoshida A, Takahashi M, Imagawa T, Shigekawa M, Takisawa H, Nakamura T (1992) Phosphorylation of ryanodine receptors in rat myocytes during beta-adrenergic stimulation. J Biochem 111(2):186–190

    CAS  Google Scholar 

  • Zeydanli EN, Kandilci HB, Turan B (2011) Doxycycline ameliorates vascular endothelial and contractile dysfunction in the thoracic aorta of diabetic rats. CardiovascToxicol 11(2):134–147

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Turan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncay, E., Zeydanli, E.N. & Turan, B. Cardioprotective effect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat. J Bioenerg Biomembr 43, 747–756 (2011). https://doi.org/10.1007/s10863-011-9400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9400-5

Keywords

Navigation