Skip to main content
Log in

New properties of mitochondrial ATP-regulated potassium channels

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The ATP-regulated potassium channel is present in the inner membrane of heart mitochondria. In this study, the activity of a single channel was measured after reconstituting the myocardium inner mitochondrial membrane into a planar lipid bilayer. We provide direct evidence of vectorial pH regulation of mitoKATP channels. When the matrix side was alkalized, this changed the channel conductance, the open probability, and the mean open and closed dwell time distributions. The conductance of the mitoKATP channel increased from about 110±8 to 145±5 pS upon changing the pH from 7.2 to 8.2. This effect was reversed by reverting the pH to the neutral value. The mitoKATP channel activity was not altered by alkalization of the cytosolic side of the planar lipid bilayer. We also observed that acidification from pH 7.2 to 6.2, in either the matrix or cytosolic compartments, decreased the open probability of the channel. This effect was reversed by perfusion with a pH 7.2 medium. Additionally, our results suggest that the mitoKATP channel is regulated by multiple phosphorylation events. The channel activity was inhibited by an ATP/Mg2+ complex, but not by ATP alone, nor by a non-hydrolysable ATP analog, e.g. AMP-PNP/Mg2+. The mitoKATP channel “run-down” was reversed by incubating with the ATP/Mg2+ complex on both sides of the planar lipid bilayer. We conclude that both pH and ATP play an important regulatory role for the cardiac mitoKATP channel with respect to the phenomenon of ischemia–reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529

    Article  CAS  Google Scholar 

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074

    Article  CAS  Google Scholar 

  • Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitchondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci U S A 101:11880–11885

    Article  CAS  Google Scholar 

  • Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276:33369–33374

    Article  CAS  Google Scholar 

  • Bednarczyk P, Kicinska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Membr Biol 199:63–72

    Article  CAS  Google Scholar 

  • Bednarczyk P, Dolowy K, Szewczyk A (2005) Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett 579:1625–1632

    Article  CAS  Google Scholar 

  • Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T (2004) Targeting mitochondrial ATP-sensitive potassium channels—a novel approach to neuroprotection. Brain Res Brain Res Rev 46:282–294

    Article  CAS  Google Scholar 

  • Busija DW, Katakam P, Rajapakse NC, Kis B, Grover G, Domoki F, Bari F (2005) Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 66:85–90

    Article  CAS  Google Scholar 

  • Cancherini DV, Trabuco LG, Reboucas NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285:F1291–F1296

    CAS  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336

    Article  CAS  Google Scholar 

  • Czyz A, Szewczyk A, Nalecz MJ, Wojtczak L (1995) The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria. Biochem Biophys Res Commun 210:98–104

    Article  CAS  Google Scholar 

  • Dahlem YA, Horn TF, Buntinas L, Gonoi T, Wolf G, Siemen D (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp approach. Biochim Biophys Acta 1656:46–56

    Article  CAS  Google Scholar 

  • Debska G, May R, Kicinska A, Szewczyk A, Elger CE, Kunz WS (2001) Potassium channel openers depolarize hippocampal mitochondria. Brain Res 892:42–50

    Article  CAS  Google Scholar 

  • Debska G, Kicinska A, Skalska J, Szewczyk A, May R, Elger CE, Kunz WS (2002) Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim Biophys Acta 1556:97–105

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271:8796–8769

    Article  CAS  Google Scholar 

  • Grover GJ, D’Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P, Atwal KS (2001) Pharmacologic characterization of BMS-191095, a mitochondrial KATP opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 297:1184–1192

    CAS  Google Scholar 

  • Halestrap AP (1994) Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans 22:522–529

    CAS  Google Scholar 

  • Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    CAS  Google Scholar 

  • Holmuhamedov EL, Wang LJ, Terzic A (1999) ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. Physiol 519:347–360

    Article  CAS  Google Scholar 

  • Hordejuk R, Lobanov NA, Kicinska A, Szewczyk A, Dolowy K (2004) pH modulation of high-conductance potassium channel from adrenal chromaffin granules. Mol Membr Biol 21:307–313

    Article  CAS  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  CAS  Google Scholar 

  • Jaburek M, Yarov-Yarovoy V, Paucek P, Garlid KD (1998) State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. J Biol Chem 273:13578–13582

    CAS  Google Scholar 

  • Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883

    Article  CAS  Google Scholar 

  • Jahangir A, Terzic A, Kurachi Y (1994) Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes. Cardiovasc Res 28:831–835

    Article  CAS  Google Scholar 

  • Jiang MT, Ljubkovic M, Nakae Y, Shi Y, Kwok WM, Stowe DF, Bosnjak ZJ (2006) Characterization of human cardiac mitochondrial ATP-sensitive potassium channel and its regulation by phorbol ester in vitro. Am J Physiol Heart Circ Physiol 290:H1770–H1776

    Article  CAS  Google Scholar 

  • Kicinska A, Swida A, Bednarczyk P, Koszela-Piotrowska I, Choma K, Dolowy K, Szewczyk A, Jarmuszkiewicz W (2007) ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism, Acanthamoeba castellanii. J Biol Chem 282:17433–17441

    Article  CAS  Google Scholar 

  • Kim MY, Kim MJ, Yoon IS, Ahn JH, Lee SH, Baik EJ, Moon CH, Jung YS (2006) Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial KATP channel conferring cardioprotection against hypoxic injury. Br J Pharmacol 149:1059–1070

    Article  CAS  Google Scholar 

  • Kulawiak B, Kudin AP, Szewczyk A, Kunz WS (2008) BK channel openers inhibit ROS production of isolated rat brain mitochondria. Exp Neurol. doi:10.1016/j.expneurol.2008.05004

  • Kwiatkowska K, Hordejuk R, Szymczyk P, Kulma M, Abdel-Shakor AB, Płucienniczak A, Dołowy K, Szewczyk A, Sobota A (2007) Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Mol Membr Biol 24:121–134

    Article  CAS  Google Scholar 

  • Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW (2003) Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 994:27–36

    Article  CAS  Google Scholar 

  • Li H, Xiao YB, Gao YQ, Yang TD (2006) Comparative proteomics analysis of differentially expressed phosphoproteins in adult rat ventricular myocytes subjected to diazoxide preconditioning. Drug Metabol Drug Interact 21:245–258

    Google Scholar 

  • Manning Fox JE, Karaman G, Wheeler MB (2006) Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells. Biochem Biophys Res Commun 350:492–497

    Article  CAS  Google Scholar 

  • Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304:539–549

    Article  CAS  Google Scholar 

  • Nakae Y, Kwok WM, Bosnjak ZJ, Jiang MT (2003) Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. Am J Physiol 284:H1865–H1871

    CAS  Google Scholar 

  • Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A, Shimamoto K (2002) Opening of mitochondrial KATP channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol 283:H440–H447

    CAS  Google Scholar 

  • O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94:420–232

    Article  CAS  Google Scholar 

  • O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49

    Article  CAS  Google Scholar 

  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267:26062–26069

    CAS  Google Scholar 

  • Piwonska M, Wilczek E, Szewczyk A, Wilczyński GM (2008) Diferential distribution of Ca2+-activated channel β4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153:446–460

    Article  CAS  Google Scholar 

  • Sato T, O’Rourke B, Marban E (1998) Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83:110–114

    CAS  Google Scholar 

  • Sato T, Sasaki N, Seharaseyon J, O’Rourke B, Marban E (2000) Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATP channels in ischemic cardioprotection. Circulation 101:2418–2423

    CAS  Google Scholar 

  • Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norm RI (2003) Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 35:433–435

    Article  CAS  Google Scholar 

  • Skalska J, Piwonska M, Wyroba E, Surmacz L, Wieczorek R, Koszela-Piotrowska I, Zielińska J, Bednarczyk P, Dołowy K, Wilczynski GM, Szewczyk A, Kunz WS (2008) A novel potassium channel in skeletal muscle mitochondria. Biochim Biophys Acta 1777:651–659

    Article  CAS  Google Scholar 

  • Szewczyk A, Wojcik G, Nalecz MJ (1995) Potassium channel opener, RP 66471, induces membrane depolarization of rat liver mitochondria. Biochem Biophys Res Commun 207:126–132

    Article  CAS  Google Scholar 

  • Szewczyk A, Wojcik G, Lobanov NA, Nalecz MJ (1997) The mitochondrial sulfonylurea receptor: identification and characterization. Biochem Biophys Res Commun 230:611–615

    Article  CAS  Google Scholar 

  • Szewczyk A, Wojcik G, Lobanov NA, Nalecz MJ (1999) Modification of the mitochondrial sulfonylurea receptor by thiol reagents. Biochem Biophys Res Commun 262:255–258

    Article  CAS  Google Scholar 

  • Szewczyk A, Skalska J, Glab M, Kulawiak B, Malinska D, Koszela-Piotrowska I, Kunz WS (2006) Mitochondrial potassium channels: from pharmacology to function. Biochim Biophys Acta 1757:715–720

    Article  CAS  Google Scholar 

  • Suzuki M, Kotake K, Fujikura K, Inagaji N, Suzuki T, Gonoi T, Seino S, Takata K (1997) Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem Biophys Res Commun 241:693–697

    Article  CAS  Google Scholar 

  • Wang X, Wu J, Li L, Chen F, Wang R, Jiang C (2003) Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res 92:1225–1232

    Article  CAS  Google Scholar 

  • Wu J, Xu H, Yang Z, Wang Y, Mao J, Jiang C (2002) Protons activate homomeric Kir6.2 channels by selective suppression of the long and intermediate closures. J Membr Biol 190:105–116

    Article  CAS  Google Scholar 

  • Xie LH, Horie M, Takano M (1999) Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A 96:15292–15297

    Article  CAS  Google Scholar 

  • Xu W, Liu Y, Wang S, McDolnald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in cardiac inner mitochondrial membrane. Science 298:895–902

    Article  CAS  Google Scholar 

  • Yarov-Yarovoy V, Paucek P, Jaburek M, Garlid KD (1997) The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol. Biochim Biophys Acta 1321:128–136

    Article  CAS  Google Scholar 

  • Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL (2001) Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res 89:1177–1183

    Article  CAS  Google Scholar 

  • Zhou M, Tanaka O, Sekiguchi M, Sakabe K, Anzai M, Izumida I, Inoue T, Kawahara K, Abe H (1999) Localization of the ATP-sensitive potassium channel subunit (Kir6. 1/uK(ATP)-1) in rat brain. Brain Res 74:15–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Szewczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednarczyk, P., Dołowy, K. & Szewczyk, A. New properties of mitochondrial ATP-regulated potassium channels. J Bioenerg Biomembr 40, 325–335 (2008). https://doi.org/10.1007/s10863-008-9153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9153-y

Keywords

Navigation