Skip to main content
Log in

Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some ‘with a little help from a friend’

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present a systematic investigation into the attainable accuracy and precision of protein structures determined by heteronuclear magic angle spinning solid-state NMR for a set of four proteins of varied size and secondary structure content. Structures were calculated using synthetically generated random sets of C-C distances up to 7 Å at different degrees of completeness. For single-domain proteins, 9–15 restraints per residue are sufficient to derive an accurate model structure, while maximum accuracy and precision are reached with over 15 restraints per residue. For multi-domain proteins and protein assemblies, additional information on domain orientations, quaternary structure and/or protein shape is needed. As demonstrated for the HIV-1 capsid protein assembly, this can be accomplished by integrating MAS NMR with cryoEM data. In all cases, inclusion of TALOS-derived backbone torsion angles improves the accuracy for small number of restraints, while no further increases are noted for restraint completeness above 40%. In contrast, inclusion of TALOS-derived torsion angle restraints consistently increases the precision of the structural ensemble at all degrees of distance restraint completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams PD et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Cryst D 66:213–221

    Article  Google Scholar 

  • Andreas LB et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192

    Article  Google Scholar 

  • Atmanene C et al (2017) Biophysical and structural characterization of mono/di-arylated lactosamine derivatives interaction with human galectin-3. Biochem Biophys Res Commun 489:281–286

    Article  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  Google Scholar 

  • Bayro MJ et al (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506–114506

    Article  ADS  Google Scholar 

  • Bennett A, Griffin R, Ok J, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627

    Article  ADS  Google Scholar 

  • Bermejo GA, Clore GM, Schwieters CD (2012) Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci 21:1824–1836

    Article  Google Scholar 

  • Berthet-Colominas C et al (1999) Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J 18:1124–1136

    Article  Google Scholar 

  • Bjelic S et al (2012) Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150(glued). J Struct Biol 177:160–167

    Article  Google Scholar 

  • Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426

    Article  ADS  Google Scholar 

  • Bum-Erdene K et al (2013) Investigation into the feasibility of thioditaloside as a novel scaffold for galectin-3-specific inhibitors. Chembiochem 14:1331–1342

    Article  Google Scholar 

  • Byeon IJ et al (2012) Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. J Am Chem Soc 134:6455–6466

    Article  Google Scholar 

  • Carneiro MG, Koharudin LMI, Griesinger C, Gronenborn AM, Lee D (2015) 1H, 13C and 15N resonance assignment of the anti-HIV lectin from Oscillatoria agardhii. Biomol NMR Assign 9:317–319

    Article  Google Scholar 

  • Castellani F et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98

    Article  ADS  Google Scholar 

  • Clore GM, Gronenborn AM (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit Rev Biochem Mol Biol 24:479–564

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1998) New methods of structure refinement for macromolecular structure determination by NMR. Proc Natl Acad Sci USA 95:5891–5898

    Article  ADS  Google Scholar 

  • Cock PJA et al (2009) Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  Google Scholar 

  • Collins PM, Oberg CT, Leffler H, Nilsson UJ, Blanchard H (2012) Taloside inhibitors of galectin-1 and galectin-3. Chem Biol Drug Des 79:339–346

    Article  Google Scholar 

  • Collins PM, Bum-Erdene K, Yu X, Blanchard H (2014) Galectin-3 interactions with glycosphingolipids. J Mol Biol 426:1439–1451

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Cuniasse P, Tavares P, Orlova EV, Zinn-Justin S (2017) Structures of biomolecular complexes by combination of NMR and cryoEM methods. Curr Opin Struct Biol 43:104–113

    Article  Google Scholar 

  • De Paëpe G, Lewandowski JR, Loquet A, Böckmann A, Griffin RG (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129:245101

    Article  ADS  Google Scholar 

  • Debiec KT, Whitley MJ, Koharudin LM, Chong LT, Gronenborn AM (2018) Integrating NMR, SAXS, and atomistic simulations: structure and dynamics of a two-domain protein. Biophys J 114:839–855

    Article  Google Scholar 

  • Demers J-P et al (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:4976

    Article  ADS  Google Scholar 

  • Du S et al (2011) Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding. J Mol Biol 406:371–386

    Article  Google Scholar 

  • Fritz M et al (2017) Toward closing the gap: quantum mechanical calculations and experimentally measured chemical shifts of a microcrystalline lectin. J Phys Chem B 121:3574–3585

    Article  Google Scholar 

  • Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol 268:170–184

    Article  Google Scholar 

  • Girvin ME, Fillingame RH (1994) Hairpin folding of subunit c of F1Fo ATP synthase: 1H distance measurements to nitroxide-derivatized aspartyl-61. Biochemistry 33:665–674

    Article  Google Scholar 

  • Gochin M, Roder H (1995) Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. Protein Sci 4:296–305

    Article  Google Scholar 

  • Grage SL, Watts A (2006) Applications of REDOR for distance measurements in biological solids. In: Webb GA (ed) Annual reports on NMR spectroscopy, vol. 60. Academic Press, pp 191–228

  • Grage SL, Xu X, Schmitt M, Wadhwani P, Ulrich AS (2014) 19F-labeling of peptides revealing long-range NMR distances in fluid membranes. J Phys Chem Lett 5:4256–4259

    Article  Google Scholar 

  • Gres AT et al (2015) X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349:99–103

    Article  ADS  Google Scholar 

  • Grishaev A, Bax A (2004) An empirical backbone-backbone hydrogen-bonding potential in proteins and its applications to NMR structure refinement and validation. J Am Chem Soc 126:7281–7292

    Article  Google Scholar 

  • Grishaev A, Wu J, Trewhella J, Bax A (2005) Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J Am Chem Soc 127:16621–16628

    Article  Google Scholar 

  • Gullion T (2008) Rotational-echo, double-resonance NMR. In: Modern magnetic resonance. Springer, pp 713–718

  • Gupta R et al (2016) Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. J Phys Chem B 120:329–339

    Article  Google Scholar 

  • Hamelryck T, Manderick B (2003) PDB file parser and structure class implemented in Python. Bioinformatics 19:2308–2310

    Article  Google Scholar 

  • Han Y et al (2010) Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 132:1976–1987

    Article  Google Scholar 

  • Han Y et al (2013) Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J Am Chem Soc 135:17793–17803

    Article  Google Scholar 

  • Hayashi I, Wilde A, Mal TK, Ikura M (2005) Structural basis for the activation of microtubule assembly by the EB1 and p150(Glued) complex. Mol Cell 19:449–460

    Article  Google Scholar 

  • Hayashi I, Plevin MJ, Ikura M (2007) CLIP170 autoinhibition mimics intermolecular interactions with p150(Glued) or EB1. Nat Struct Mol Biol 14:980–981

    Article  Google Scholar 

  • Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502

    Article  Google Scholar 

  • Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209

    ADS  Google Scholar 

  • Honnappa S et al (2006) Key interaction modes of dynamic plus TIP networks. Mol Cell 23:663–671

    Article  Google Scholar 

  • Hou G, Yan S, Trébosc J, Amoureux J-P, Polenova T (2013) Broadband homonuclear correlation spectroscopy driven by combined R2nv sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J Magn Reson 232:18–30

    Article  ADS  Google Scholar 

  • Hsieh TJ et al (2016) Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci Rep 6:29457

    Article  ADS  Google Scholar 

  • Huber M et al (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918

    Article  Google Scholar 

  • Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    Article  ADS  Google Scholar 

  • Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly 13C,15N-labeled solids. J Am Chem Soc 124:10728–10742

    Article  Google Scholar 

  • Koharudin LM, Gronenborn AM (2011) Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin. Structure 19:1170–1181

    Article  Google Scholar 

  • Kraus J et al (2018) Chemical shifts of the carbohydrate binding domain of galectin-3 from magic angle spinning NMR and hybrid quantum mechanics/molecular mechanics calculations. J Phys Chem B 122:2931–2939

    Article  Google Scholar 

  • Kuszewski J, Qin J, Gronenborn AM, Clore GM (1995a) The impact of direct refinement against 13Cα and 13Cβ chemical shifts on protein structure determination by NMR. J Magn Reson Ser B 106:92–96

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1995b) The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. J Magn Reson Ser B 107:293–297

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1997) Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. J Magn Reson 125:171–177

    Article  ADS  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–2338

    Article  Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705

    Article  Google Scholar 

  • Lewandowski JR, De Paëpe G, Griffin RG (2007) Proton assisted insensitive nuclei cross polarization. J Am Chem Soc 129:728–729

    Article  Google Scholar 

  • Liu C et al (2016) Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat Commun 7:10714

    Article  ADS  Google Scholar 

  • Loquet A, Lv G, Giller K, Becker S, Lange (2011) A. 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725

    Article  Google Scholar 

  • Lundström P et al (2007) Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins. J Biomol NMR 38:199–212

    Article  Google Scholar 

  • Michal CA, Jelinski LW (1997) REDOR 3D: heteronuclear distance measurements in uniformly labeled and natural abundance solids. J Am Chem Soc 119:9059–9060

    Article  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126:7196–7197

    Article  Google Scholar 

  • Nieuwkoop AJ, Wylie BJ, Franks WT, Shah GJ, Rienstra CM (2009) Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 131:095101–095101

    Article  ADS  Google Scholar 

  • Nilges M (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J Mol Biol 245:645–660

    Article  Google Scholar 

  • Prestegard J (1998) New techniques in structural NMR—anisotropic interactions. Nat Struct Mol Biol 5:517

    Article  Google Scholar 

  • Quinn CM, Polenova T (2016) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 49:1–44

    Article  Google Scholar 

  • Quinn CM et al (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5alpha identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci USA 115:11519–11524

    Article  Google Scholar 

  • Rajput VK et al (2016) A selective galactose-coumarin-derived galectin-3 inhibitor demonstrates involvement of galectin-3-glycan interactions in a pulmonary fibrosis model. J Med Chem 59:8141–8147

    Article  Google Scholar 

  • Roos M, Wang T, Shcherbakov AA, Hong M (2018) Fast magic-angle-spinning 19F spin exchange NMR for determining nanometer 19F–19F distances in proteins and pharmaceutical compounds. J Phys Chem B 122:2900–2911

    Article  Google Scholar 

  • Saraboji K et al (2012) The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: ultra-high-resolution structures and water dynamics. Biochemistry 51:296–306

    Article  Google Scholar 

  • Sborgi L et al (2015) Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci USA 112:13237–13242

    Article  ADS  Google Scholar 

  • Scholz I, Huber M, Manolikas T, Meier B, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460:278–283

    Article  ADS  Google Scholar 

  • Schrödinger L. The PyMOL molecular graphics system. 2.0 edn

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ and Clore GM (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62

    Article  Google Scholar 

  • Schwieters CD, Bermejo GA, Clore GM (2018) Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 27:26–40

    Article  Google Scholar 

  • Shahid SA et al (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  Google Scholar 

  • Sorme P et al (2005) Structural and thermodynamic studies on cation-Pi interactions in lectin-ligand complexes: high-affinity galectin-3 inhibitors through fine-tuning of an arginine–arene interaction. J Am Chem Soc 127:1737–1743

    Article  Google Scholar 

  • Spronk CB, Nabuurs S, Krieger E, Vriend G, Vuister G (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 45:315–337

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2003) 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325–2341

    Article  ADS  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tjandra N, Grzesiek S, Bax A (1996) Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc 118:6264–6272

    Article  Google Scholar 

  • Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Mol Biol 4:732

    Article  Google Scholar 

  • Wälti MA et al (2016) Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc Natl Acad Sci USA 113:E4976-E4984

    Article  ADS  Google Scholar 

  • Wang J et al (2009) Determination of multicomponent protein structures in solution using global orientation and shape restraints. J Am Chem Soc 131:10507–10515

    Article  Google Scholar 

  • Wang I et al (2014) Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1. Nucleic Acids Res 42:5949–5966

    Article  Google Scholar 

  • Wang M et al (2018) Fast magic-angle spinning 19F NMR spectroscopy of HIV-1 capsid protein assemblies. Angew Chem Int Ed Engl 57:16375–16379

    Article  Google Scholar 

  • Weisbrich A et al (2007) Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol 14:959–967

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, Chichester

    Book  Google Scholar 

  • Yan S et al (2013) Three-dimensional structure of CAP-Gly domain of mammalian dynactin determined by magic angle spinning NMR spectroscopy: conformational plasticity and interactions with end-binding protein EB1. J Mol Biol 425:4249–4266

    Article  Google Scholar 

  • Yan S et al (2015) Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 112:14611–14616

    Article  ADS  Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Article  Google Scholar 

  • Zhang H et al (2016) HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. J Am Chem Soc 138:1406

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH Grant-P50GM082251, Technology Development Project 2) and is a contribution from the Pittsburgh Center for HIV Protein Interactions. JK is supported by the National Science Foundation Graduate Research Fellowship Program (#1247394). We acknowledge the support of the NSF CHE0959496 grant for acquisition of the 850 MHz NMR spectrometer and of the NIGMS P30GM110758 grant for the support of core instrumentation infrastructure at the University of Delaware. The cryoEM map was kindly provided by Peijun Zhang and Juan Perilla.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatyana Polenova or Angela M. Gronenborn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 976 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, R.W., Fritz, M.P., Kraus, J. et al. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some ‘with a little help from a friend’. J Biomol NMR 73, 333–346 (2019). https://doi.org/10.1007/s10858-019-00233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00233-9

Keywords

Navigation