Skip to main content

Advertisement

Log in

NMR structure of the HIV-1 reverse transcriptase thumb subdomain

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

A Correction to this article was published on 12 December 2017

This article has been updated

Abstract

The solution NMR structure of the isolated thumb subdomain of HIV-1 reverse transcriptase (RT) has been determined. A detailed comparison of the current structure with dozens of the highest resolution crystal structures of this domain in the context of the full-length enzyme reveals that the overall structures are very similar, with only two regions exhibiting local conformational differences. The C-terminal capping pattern of the αH helix is subtly different, and the loop connecting the αI and αJ helices in the p51 chain of the full-length p51/p66 heterodimeric RT differs from our NMR structure due to unique packing interactions in mature RT. Overall, our data show that the thumb subdomain folds independently and essentially the same in isolation as in its natural structural context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 12 December 2017

    In the original publication of the article, the given name and family name of the author P. Andrew Karplus was published incorrectly. The name should read as "P. Andrew" – Given name and "Karplus" – Family name.

References

  • Balzarini J, Das K, Bernatchez JA et al (2015) Alpha-carboxy nucleoside phosphonates as universal nucleoside triphosphate mimics. Proc Natl Acad Sci USA 112:3475–3480

    Article  ADS  Google Scholar 

  • Beard WA, Wilson SH (1993) Kinetic analysis of template:primer interactions with recombinant forms of HIV-1 reverse transcriptase. Biochemistry-Us 32:9745–9753

    Article  Google Scholar 

  • Beard WA, Stahl SJ, Kim HR, Bebenek K (1994) Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain. J Biol Chem 269:28091–28097

    Google Scholar 

  • Bebenek K, Beard WA, Casas-Finet JR et al (1995) Reduced frameshift fidelity and processivity of HIV-1 reverse transcriptase mutants containing alanine substitutions in helix H of the thumb subdomain. J Biol Chem 270:19516–19523

    Article  Google Scholar 

  • Betancor G, Puertas MC, Nevot M et al (2010) Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother 54:4799–4811

    Article  Google Scholar 

  • Braz VA, Holladay LA, Barkley MD (2010) Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers. Biochemistry-Us 49:601–610

    Article  Google Scholar 

  • Cabodevilla JF, Odriozola L, Santiago E, Martinez-Irujo JJ (2001) Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase. Eur J Biochem 268:1163–1172

    Article  Google Scholar 

  • Clark SA, Tronrud DE, Karplus PA (2015) Residue-level global and local ensemble–ensemble comparisons of protein domains. Protein Sci 24:1528–1542. doi:10.1002/pro.2714

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1998) Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol 16:22–34

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Das K, Lewi PJ, Hughes SH, Arnold EE (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88:209–231

    Article  Google Scholar 

  • Davies JF, Hostomska Z, Hostomsky Z et al (1991) Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252:88–95

    Article  ADS  Google Scholar 

  • Davis IW, Leaver-Fay A, Chen VB et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  Google Scholar 

  • De Béthune M-P (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antivir Res 85:75–90

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Divita G, Rittinger K, Geourjon C et al (1995) Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 245:508–521

    Article  Google Scholar 

  • Fletcher RS, Holleschak G, Nagy E et al (1996) Single-step purification of recombinant wild-type and mutant HIV-1 reverse transcriptase. PREP 7:27–32

    Google Scholar 

  • Hermann T, Meier T, Götte M, Heumann H (1994) The “helix clamp” in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases. Nucleic Acids Res 22:4625–4633

    Article  Google Scholar 

  • Hsiou Y, Ding J, Das K et al (1996) Structure of unliganded HIV-1 reverse transcriptase at 2.7 Å resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 4:853–860

    Article  Google Scholar 

  • Huang H (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675

    Article  ADS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38

    Article  Google Scholar 

  • Jacobo-Molina A, Arnold EE (1991) HIV reverse-transcriptase structure-function-relationships. Biochemistry-Us 30:6351–6361

    Article  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni RG et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc Natl Acad Sci USA 90:6320–6324

    Article  ADS  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    Article  ADS  Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Gr 14:51–55

    Article  Google Scholar 

  • Lansdon EB, Brendza KM, Hung M et al (2010) Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem 53:4295–4299

    Article  Google Scholar 

  • Lapkouski M, Tian L, Miller JT et al (2013) Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 20:230–236

    Article  Google Scholar 

  • Laskowski RA, Rullmann JAC, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Marko RA, Liu H-W, Ablenas CJ et al (2013) Binding kinetics and affinities of heterodimeric versus homodimeric HIV-1 reverse transcriptase on DNA–DNA substrates at the single-molecule level. J Phys Chem B 117:4560–4567

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  Google Scholar 

  • Powell MD, Beard WA, Bebenek K et al (1999) Residues in the αH and αI helices of the HIV-1 reverse transcriptase thumb subdomain required for the specificity of RNase H-catalyzed removal of the polypurine tract primer. J Mol Biol 274:19885–19893

    Google Scholar 

  • Sarafianos SG, Clark AD, Das K, Tuske S (2002) Structures of HIV-1 reverse transcriptase with pre-and post-translocation AZTMP-terminated DNA. EMBO J 21:6614–6624

    Article  Google Scholar 

  • Sarafianos SG, Marchand B, Das K et al (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713

    Article  Google Scholar 

  • Sattler M, Maurer M, Schleucher J (1995) A simultaneous 15N,1H- and 13C,1H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J Biomol NMR 5:97–102

    Article  Google Scholar 

  • The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

  • Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor–NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62

    Article  Google Scholar 

  • Sharaf NG, Poliner E, Slack RL et al (2014) The p66 immature precursor of HIV-1 reverse transcriptase. Proteins 82:2343–2352

    Article  Google Scholar 

  • Sluis-Cremer N, Temiz NA, Bahar I (2004) Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res 2:323–332

    Article  Google Scholar 

  • Tomasselli AG, Sarcich JL, Barrett LJ et al (1993) Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease. Protein Sci 2:2167–2176

    Article  Google Scholar 

  • Venezia CF, Howard KJ, Ignatov ME, Holladay LA (2006) Effects of efavirenz binding on the subunit equilibria of HIV-1 reverse transcriptase. Biochemistry-Us 45:2779–2789

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi:10.1002/prot.20449

    Article  Google Scholar 

  • Wang J, Smerdon SJ, Jäger J et al (1994) Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci USA 91:7242–7246

    Article  ADS  Google Scholar 

  • Wapling J, Moore KL, Sonza S, Mak J (2005) Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer. J Virol 79:10247–10257

    Article  Google Scholar 

  • Zheng X, Pedersen LC, Gabel SA et al (2014) Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Res 42:5361–5377

    Article  Google Scholar 

  • Zheng X, Perera L, Mueller GA et al (2015) Asymmetric conformational maturation of HIV-1 reverse transcriptase. Elife 4:11952

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants P50GM082251 (to AMG) and R01GM083136 (to PAK). N.G.S was the recipient of a Graduate Research Fellowship, 1247842, from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Gronenborn.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10858-017-0139-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharaf, N.G., Brereton, A.E., Byeon, IJ.L. et al. NMR structure of the HIV-1 reverse transcriptase thumb subdomain. J Biomol NMR 66, 273–280 (2016). https://doi.org/10.1007/s10858-016-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0077-2

Keywords

Navigation