Skip to main content
Log in

CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR—protein spectral assignment

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Reproducibility is a cornerstone of the scientific method, essential for validation of results by independent laboratories and the sine qua non of scientific progress. A key step toward reproducibility of biomolecular NMR studies was the establishment of public data repositories (PDB and BMRB). Nevertheless, bio-NMR studies routinely fall short of the requirement for reproducibility that all the data needed to reproduce the results are published. A key limitation is that considerable metadata goes unpublished, notably manual interventions that are typically applied during the assignment of multidimensional NMR spectra. A general solution to this problem has been elusive, in part because of the wide range of approaches and software packages employed in the analysis of protein NMR spectra. Here we describe an approach for capturing missing metadata during the assignment of protein NMR spectra that can be generalized to arbitrary workflows, different software packages, other biomolecules, or other stages of data analysis in bio-NMR. We also present extensions to the NMR-STAR data dictionary that enable machine archival and retrieval of the “missing” metadata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahrami A et al (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5(3):e1000307

    Article  MathSciNet  ADS  Google Scholar 

  • Bartels C et al (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6(1):1–10

    Article  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H 1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88:425–431

    ADS  Google Scholar 

  • Buckheit JB, Donoho DL (1995) Wavelab and reproducible research. Springer, New York

    Book  Google Scholar 

  • Collins FS, Tabek LA (2014) NIH plans to enhance reproducibility. Nature 505:612–613

    Article  Google Scholar 

  • Dall’Olio GM, Bertranpetit J, Laayouni H (2010) The annotation and the usage of scientific databases could be improved with public issue tracker software. Database 2010:baq035

    Google Scholar 

  • Eclipse IDE (2007) The Eclipse Foundation. www.eclipse.org

  • Goddard TD, Kneller DG (2004) SPARKY 3. University of California, San Francisco, p 15

    Google Scholar 

  • Grzesiek S, Bax A (1992) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99(1):201–207

    ADS  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3(2):185–204

    Article  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C 15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Ser B 101(1):114–119

    Article  Google Scholar 

  • Guerry P, Herrmann T (2011) Advances in automated NMR protein structure determination. Q Rev Biophys 44(03):257–309

    Article  Google Scholar 

  • Güntert P (2004) Automated NMR structure calculation with CYANA. In: Downing AK (ed) Methods in Molecular Biology, vol. 278: Protein NMR techniques. Humana Press, Totowa, pp 353–378

  • Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38(2):129–143

    Article  Google Scholar 

  • Ioannidis JPA et al (2008) Repeatability of published microarray gene expression analyses. Nat Genet 41(2):149–155

    Article  Google Scholar 

  • Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. In: Downing AK (ed) Methods in Molecular Biology, vol. 278: Protein NMR techniques. Humana Press, Totowa, pp 313–352

  • Kay LE et al (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89(3):496–514

    ADS  Google Scholar 

  • Keller RLJ (2004) Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. Diss ETH No. 15947. Diss. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Landis SC et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7419):187–191

    Article  ADS  Google Scholar 

  • Loeliger J, McCullough M (2012) Version control with Git: powerful tools and techniques for collaborative software development. O’Reilly Media Inc, Sebastopol

    Google Scholar 

  • Marion D et al (1989) Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins. J Am Chem Soc 111(4):1515–1517

    Article  MathSciNet  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically enriched proteins. J Am Chem Soc 114(27):10974–10975

    Article  Google Scholar 

  • Open Source Initiative (2006) The MIT License. http://opensource.org/licenses/MIT

  • Peng RD (2011) Reproducible research in computational science. Science 334(6060):1226

    Article  ADS  Google Scholar 

  • Prinz F, Schlange T, Asadullah K (2011) Believe it or not: how much can we rely on published data on potential drug targets? Nat Rev Drug Discov 10(9):712

    Article  Google Scholar 

  • Rowland NMR Toolkit Script Generator. Web. September 18, 2014. http://sbtools.uchc.edu/nmr/nmr_toolkit/

  • Shen Y et al (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  Google Scholar 

  • Stodden V, Miguez S (2014) Best practices for computational science: software infrastructure and environments for reproducible and extensible research. J Open Res Softw 2(1):1–6. doi:10.5334/jors.ay

  • Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36(suppl 1):D402–D408

    MathSciNet  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696

    Article  Google Scholar 

  • Williamson MP, Craven CJ (2009) Automated protein structure calculation from NMR data. J Biomol NMR 43(3):131–143

    Article  Google Scholar 

  • Zimmerman DE et al (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269(4):592–610

    Article  MathSciNet  Google Scholar 

  • Zuiderweg ERP, Fesik SW (1989) Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28(6):2387–2391

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by United States National Institutes of Health Grant GM-083072. The authors would like to thank Dr. Mark Maciejewski for kindly providing time-domain data of the Samp3 protein and Dr. Woonghee Lee for adding the reproducibility extensions to the NMRFam release of Sparky.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Gryk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenwick, M., Hoch, J.C., Ulrich, E. et al. CONNJUR R: an annotation strategy for fostering reproducibility in bio-NMR—protein spectral assignment. J Biomol NMR 63, 141–150 (2015). https://doi.org/10.1007/s10858-015-9964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9964-1

Keywords

Navigation