Skip to main content
Log in

An extended combinatorial 15N, 13Cα, and \( ^{13} {\text{C}}^{\prime } \) labeling approach to protein backbone resonance assignment

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solution NMR studies of α-helical membrane proteins are often complicated by severe spectral crowding. In addition, hydrophobic environments like detergent micelles, isotropic bicelles or nanodiscs lead to considerably reduced molecular tumbling rates which translates into line-broadening and low sensitivity. Both difficulties can be addressed by selective isotope labeling methods. In this publication, we propose a combinatorial protocol that utilizes four different classes of labeled amino acids, in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes individually as well as simultaneously. This results in eight different combinations of dipeptides giving rise to cross peaks in 1H–15N correlated spectra. Their differentiation is achieved by recording a series of HN-detected 2D triple-resonance spectra. The utility of this new scheme is demonstrated with a homodimeric 142-residue membrane protein in DHPC micelles. Restricting the number of selectively labeled samples to three allowed the identification of the amino-acid type for 77 % and provided sequential information for 47 % of its residues. This enabled us to complete the backbone resonance assignment of the uniformly labeled protein merely with the help of a 3D HNCA spectrum, which can be collected with reasonable sensitivity even for relatively large, non-deuterated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104

    Article  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) 1H–1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins. J Magn Reson 88:425–431. doi:10.1016/0022-2364(90)90202-K

    ADS  Google Scholar 

  • Bayrhuber M, Riek R (2011) Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins. J Magn Reson 209:310–314

    Article  ADS  Google Scholar 

  • Boyd J, Soffe N (1989) Selective excitation by pulse shaping combined with phase modulation. J Magn Reson 85:406–413

    ADS  Google Scholar 

  • Butterwick JA, MacKinnon R (2010) Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J Mol Biol 403:591–606

    Article  Google Scholar 

  • Clowes RT, Boucher W, Hardman CH, Domaille PJ, Laue ED (1993) A 4D HCC(CO)NNH experiment for the correlation of aliphatic side-chain and backbone resonances in 13C/15N labeled proteins. J Biomol NMR 3:349–354. doi:10.1007/Bf00212520

    Article  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N–13C-labelled proteins. J Magn Reson 97:213–217

    ADS  Google Scholar 

  • Czisch M, Boelens R (1998) Sensitivity enhancement in the TROSY experiment. J Magn Reson 134:158–160

    Article  ADS  Google Scholar 

  • Demirel O, Bangert I, Tampe R, Abele R (2010) Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 11:383–393. doi:10.1111/j.1600-0854.2009.01021.x

    Article  Google Scholar 

  • Demirel O, Jan I, Wolters D, Blanz J, Saftig P, Tampe R, Abele R (2012) The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 125:4230–4240. doi:10.1242/jcs.087346

    Article  Google Scholar 

  • Dötsch V, Oswald RE, Wagner G (1996) Amino-acid-type-selective triple-resonance experiments. J Magn Reson 110:107–111

    Article  Google Scholar 

  • Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577. doi:10.1021/ja901633y

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15

    Article  Google Scholar 

  • Fesik SW, Eaton HL, Olejniczak ET, Zuiderweg ERP, Mcintosh LP, Dahlquist FW (1990) 2D and 3D NMR-spectroscopy employing 13C–13C magnetization transfer by isotropic mixing—Spin system-identification in large proteins. J Am Chem Soc 112:886–888. doi:10.1021/Ja00158a069

    Article  Google Scholar 

  • Feuerstein S, Plevin MJ, Willbold D, Brutscher B (2012) iHADAMAC: a complementary tool for sequential resonance assignment of globular and highly disordered proteins. J Magn Reson 214:329–334. doi:10.1016/j.jmr.2011.10.019

    Article  ADS  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Gossert AD, Hinniger A, Gutmann S, Jahnke W, Strauss A, Fernández C (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51:449–456. doi:10.1007/s10858-011-9570-9

    Article  Google Scholar 

  • Griffey RH, Redfield AG, Loomis RE, Dahlquist FW (1985) Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme. Biochemistry 24:817–822

    Article  Google Scholar 

  • Griffey RH, Redfield AG, Mcintosh LP, Oas TG, Dahlquist FW (1986) Assignment of proton amide resonances of T4 lysozyme by 13C and 15N multiple isotopic labeling. J Am Chem Soc 108:6816–6817. doi:10.1021/Ja00281a066

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson, Ser B 101:114–119. doi:10.1006/jmrb.1993.1019

    Article  Google Scholar 

  • Hagn F, Wagner G (2014) Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J Biomol NMR. doi:10.1007/s10858-014-9883-6

    Google Scholar 

  • Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P (2010) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84

    Article  Google Scholar 

  • Ikeya T et al (2011) Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50:137–146. doi:10.1007/s10858-011-9502-8

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990a) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  Google Scholar 

  • Ikura M, Krinks M, Torchia DA, Bax A (1990b) An efficient NMR approach for obtaining sequence-specific resonance assignments of larger proteins based on multiple isotopic labeling. FEBS Lett 266:155–158

    Article  Google Scholar 

  • Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS (2012) Amino acid selective labeling and unlabeling for protein resonance assignments. Adv Exp Med Biol 992:95–118. doi:10.1007/978-94-007-4954-2_6

    Article  Google Scholar 

  • Kainosho M, Tsuji T (1982) Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21:6273–6279

    Article  Google Scholar 

  • Kay LE, Ikura M, Bax A (1990a) Proton–proton correlation via carbon–carbon couplings: a three-dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with carbon-13. J Am Chem Soc 112:888–889. doi:10.1021/Ja00158a070

    Article  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990b) Three-dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    ADS  Google Scholar 

  • Kay L, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  Google Scholar 

  • Klammt C et al (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    Article  Google Scholar 

  • Kupče E, Freeman R (1994) Wide-band excitation with polychromatic pulses. J Magn Reson A 108:268–273

    Article  ADS  Google Scholar 

  • Kupče E, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson, Ser B 106:300–303. doi:10.1006/jmrb.1995.1049

    Article  Google Scholar 

  • Lee D, Hilty C, Wider G, Wüthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:72–76

    Article  ADS  Google Scholar 

  • LeMaster DM, Richards FM (1985) 1H–15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24:7263–7268

    Article  Google Scholar 

  • Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015

    Article  Google Scholar 

  • Lescop E, Kern T, Brutscher B (2010) Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type 1H–15N correlation experiments. J Magn Reson 203:190–198. doi:10.1016/j.jmr.2009.12.001

    Article  ADS  Google Scholar 

  • Lin Z, Xu Y, Yang S, Yang D (2006) Sequence-specific assignment of aromatic resonances of uniformly 13C,15N-labeled proteins by using 13C- and 15N-edited NOESY spectra Angewandte Chemie (International ed in English) 45:1960–1963

  • Logan TM, Olejniczak ET, Xu RX, Fesik SW (1992) Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314:413–418

    Article  Google Scholar 

  • Löhr F et al (2012) Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment. J Biomol NMR 52:197–210. doi:10.1007/s10858-012-9601-1

    Article  Google Scholar 

  • Maslennikov I, Choe S (2013) Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 23:555–562

    Article  Google Scholar 

  • Maslennikov I et al (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci USA 107:10902–10907

    Article  ADS  Google Scholar 

  • Masterson LR, Tonelli M, Markley JL, Veglia G (2008) Simultaneous detection and deconvolution of congested NMR spectra containing three isotopically labeled species. J Am Chem Soc 130:7818–7819

    Article  Google Scholar 

  • McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    Article  Google Scholar 

  • Michel E, Skrisovska L, Wüthrich K, Allain FH (2013) Amino acid-selective segmental isotope labeling of multidomain proteins for structural biology. ChemBioChem 14:457–466. doi:10.1002/cbic.201200732

    Article  Google Scholar 

  • Montelione GT, Wagner G (1990) Conformation-independent sequential NMR connections in isotope-enriched polypeptides by 1H–13C–15N triple-resonance experiments. J Magn Reson 87:183–188. doi:10.1016/0022-2364(90)90098-T

    ADS  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114:10974–10975. doi:10.1021/Ja00053a051

    Article  Google Scholar 

  • Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73

    Article  Google Scholar 

  • Nietlispach D, Gautier A (2011) Solution NMR studies of polytopic α-helical membrane proteins. Curr Opin Struct Biol 21:497–508

    Article  Google Scholar 

  • Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–11207

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093. doi:10.1111/j.1432-1033.2004.04346.x

    Article  Google Scholar 

  • Ozawa K, Wu PS, Dixon NE, Otting G (2006) 15N-Labelled proteins by cell-free protein synthesis. Strategies for high-throughput NMR studies of proteins and protein-ligand complexes. FEBS J 273:4154–4159

    Article  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2008) Amino acid type identification in NMR spectra of proteins via β- and γ-carbon edited experiments. J Magn Reson 195:187–195. doi:10.1016/j.jmr.2008.09.010

    Article  ADS  Google Scholar 

  • Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126:5020–5021

    Article  Google Scholar 

  • Patt SL (1992) Single-frequency-shifted and multiple-frequency-shifted laminar pulses. J Magn Reson 96:94–102

    ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pervushin KV, Wider G, Wüthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J Biomol NMR 12:345–348

    Article  Google Scholar 

  • Rasia RM, Brutscher B, Plevin MJ (2012) Selective isotopic unlabeling of proteins using metabolic precursors: application to NMR assignment of intrinsically disordered proteins. ChemBioChem 13:732–739. doi:10.1002/cbic.201100678

    Article  Google Scholar 

  • Reckel S et al (2008) Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins. Proc Natl Acad Sci USA 105:8262–8267. doi:10.1073/pnas.0710843105

    Article  ADS  Google Scholar 

  • Rios CB, Feng W, Tashiro M, Shang Z, Montelione GT (1996) Phase labeling of C–H and C–C spin-system topologies: application in constant-time PFG-CBCA(CO)NH experiments for discriminating amino acid spin-system types. J Biomol NMR 8:345–350

    Article  Google Scholar 

  • Rule GS, Tjandra N, Simplaceanu V, Ho C (1993) Assignment strategies for 15N–1H correlated spectra of large proteins in solution. J Magn Reson 102:126–128

    Article  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590

    Article  ADS  Google Scholar 

  • Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40. doi:10.1002/mrc.1816

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Schmidt E, Güntert P (2013) Reliability of exclusively NOESY-based automated resonance assignment and structure determination of proteins. J Biomol NMR 57:193–204. doi:10.1007/s10858-013-9779-x

    Article  Google Scholar 

  • Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H–15N correlations. J Magn Reson 141:34–43

    Article  ADS  Google Scholar 

  • Schwarz D et al (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957

    Article  Google Scholar 

  • Serber Z et al (2000) New carbon-detected protein NMR experiments using CryoProbes. J Am Chem Soc 122:3554–3555. doi:10.1021/Ja991371m

    Article  Google Scholar 

  • Shenkarev ZO et al (2010) NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J Am Chem Soc 132:5630–5637

    Article  Google Scholar 

  • Shi J, Pelton JG, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247

    Article  MATH  Google Scholar 

  • Shortle D (1994) Assignment of amino acid type in 1H–15N correlation spectra by labeling with 14N-amino acids. J Magn Reson 105:88–90

    Article  Google Scholar 

  • Smith MA, Hu H, Shaka AJ (2001) Improved broadband inversion performance for NMR in liquids. J Magn Reson 151:269–283. doi:10.1006/jmre.2001.2364

    Article  ADS  Google Scholar 

  • Sobhanifar S et al (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  Google Scholar 

  • Staunton D, Schlinkert R, Zanetti G, Colebrook SA, Campbell ID (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn Reson Chem 44:S2–S9. doi:10.1002/mrc.1835

    Article  Google Scholar 

  • Takeuchi K, Ng E, Malia TJ, Wagner G (2007) 1-13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins. J Biomol NMR 38:89–98. doi:10.1007/s10858-007-9152-z

    Article  Google Scholar 

  • Tamm LK, Liang B (2006) NMR of membrane proteins in solution. Prog Nucl Magn Reson Spectrosc 48:201–210

    Article  Google Scholar 

  • Tate S et al (1992) Stable isotope aided nuclear magnetic resonance study to investigate the receptor-binding site of human interleukin 1β. Biochemistry 31:2435–2442

    Article  Google Scholar 

  • Tonelli M, Masterson LR, Hallenga K, Veglia G, Markley JL (2007) Carbonyl carbon label selective (CCLS) 1H–15N HSQC experiment for improved detection of backbone 13C–15N cross peaks in larger proteins. J Biomol NMR 39:177–185. doi:10.1007/s10858-007-9185-3

    Article  Google Scholar 

  • Trbovic N, Klammt C, Koglin A, Löhr F, Bernhard F, Dötsch V (2005) Efficient strategy for the rapid backbone assignment of membrane proteins. J Am Chem Soc 127:13504–13505

    Article  Google Scholar 

  • Tumulka F, Roos C, Löhr F, Bock C, Bernhard F, Dötsch V, Abele R (2013) Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. J Biomol NMR 57:141–154. doi:10.1007/s10858-013-9774-2

    Article  Google Scholar 

  • Vajpai N, Strauss A, Fendrich G, Cowan-Jacob SW, Manley PW, Grzesiek S, Jahnke W (2008a) Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J Biol Chem 283:18292–18302. doi:10.1074/jbc.M801337200

    Article  Google Scholar 

  • Vajpai N, Strauss A, Fendrich G, Cowan-Jacob SW, Manley PW, Jahnke W, Grzesiek S (2008b) Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Biomol NMR Assign 2:41–42. doi:10.1007/s12104-008-9079-7

    Article  Google Scholar 

  • Weigelt J (1998) Single scan, sensitivity- and gradient-enhanced TROSY for multidimensional NMR Experiments. J Am Chem Soc 120:10778–10779

    Article  Google Scholar 

  • Weigelt J, van Dongen M, Uppenberg J, Schultz J, Wikström M (2002) Site-selective screening by NMR spectroscopy with labeled amino acid pairs. J Am Chem Soc 124:2446–2447

    Article  Google Scholar 

  • Wishart DS et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson 101:201–205

    Article  Google Scholar 

  • Wu PS, Ozawa K, Jergic S, Su XC, Dixon NE, Otting G (2006) Amino-acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J Biomol NMR 34:13–21

    Article  Google Scholar 

  • Xu Y, Lin Z, Ho C, Yang D (2005) A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C,15N-labeled large proteins. J Am Chem Soc 127:11920–11921

    Article  Google Scholar 

  • Yabuki T et al (1998) Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J Biomol NMR 11:295–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the state of Hesse (Center for Biomolecular Magnetic Resonance), the German Research Foundation (SFB 807), NIH (U54GM087519) and the Cluster of Excellence Frankfurt (Macromolecular Complexes).

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rupert Abele or Volker Dötsch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löhr, F., Tumulka, F., Bock, C. et al. An extended combinatorial 15N, 13Cα, and \( ^{13} {\text{C}}^{\prime } \) labeling approach to protein backbone resonance assignment. J Biomol NMR 62, 263–279 (2015). https://doi.org/10.1007/s10858-015-9941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9941-8

Keywords

Navigation