Skip to main content
Log in

Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The 1H dipolar network, which is the major obstacle for applying proton detection in the solid-state, can be reduced by deuteration, employing the RAP (Reduced Adjoining Protonation) labeling scheme, which yields random protonation at non-exchangeable sites. We present here a systematic study on the optimal degree of random sidechain protonation in RAP samples as a function of the MAS (magic angle spinning) frequency. In particular, we compare 1H sensitivity and linewidth of a microcrystalline protein, the SH3 domain of chicken α-spectrin, for samples, prepared with 5–25 % H2O in the E. coli growth medium, in the MAS frequency range of 20–60 kHz. At an external field of 19.96 T (850 MHz), we find that using a proton concentration between 15 and 25 % in the M9 medium yields the best compromise in terms of sensitivity and resolution, with an achievable average 1H linewidth on the order of 40–50 Hz. Comparing sensitivities at a MAS frequency of 60 versus 20 kHz, a gain in sensitivity by a factor of 4–4.5 is observed in INEPT-based 1H detected 1D 1H,13C correlation experiments. In total, we find that spectra recorded with a 1.3 mm rotor at 60 kHz have almost the same sensitivity as spectra recorded with a fully packed 3.2 mm rotor at 20 kHz, even though ~20× less material is employed. The improved sensitivity is attributed to 1H line narrowing due to fast MAS and to the increased efficiency of the 1.3 mm coil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194:16–24

    Article  ADS  Google Scholar 

  • Agarwal V, Xue Y, Reif B, Skrynnikov NR (2008) Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed. J Am Chem Soc 130:16611–16621

    Article  Google Scholar 

  • Akbey U, Lange S, Franks WT, Linser R, Rehbein K, Diehl A, van Rossum BJ, Reif B, Oschkinat H (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Article  Google Scholar 

  • Asami S, Reif B (2012) Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins. J Biomol NMR 52:31–39

    Article  Google Scholar 

  • Asami S, Schmieder P, Reif B (2010) High resolution H-1-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135

    Article  Google Scholar 

  • Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  ADS  Google Scholar 

  • Bak M, Schultz R, Vosegaard T, Nielsen NC (2002) Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. J Magn Reson 154:28–45

    Article  ADS  Google Scholar 

  • Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–346

    Article  ADS  Google Scholar 

  • Bockmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  Google Scholar 

  • Bosman L, Madhu PK, Vega S, Vinogradov E (2004) Improvement of homonuclear dipolar decoupling sequences in solid-state nuclear magnetic resonance utilising radiofrequency imperfections. J Magn Reson 169:39–48

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Chevelkov V, Chen Z, Bermel W, Reif B (2005) Resolution enhancement in MAS solid-state NMR by application of 13C homonuclear scalar decoupling during acquisition. J Magn Reson 172:56–62

    Article  ADS  Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Ernst M, Samoson A, Meier BH (2001) Low-power decoupling in fast magic-angle spinning NMR. Chem Phys Lett 348:293–302

    Article  ADS  Google Scholar 

  • Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 103:16248–16253

    Article  ADS  Google Scholar 

  • Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer RM, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Natl Acad Sci U S A 105:4621–4626

    Article  ADS  Google Scholar 

  • Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401

    Article  Google Scholar 

  • Helmus JJ, Jaroniec CP (2011) NMR glue, http://code.google.com/p/nmrglue, The Ohio State University

  • Hong M, Jakes K (1999) Selective and extensive C-13 labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74

    Article  Google Scholar 

  • Hoult DI, Richards RE (1976) Signal-to-noise ratio of nuclear magnetic-resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  • Huber M, Hiller S, Schanda P, Ernst M, Bockmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918

    Article  Google Scholar 

  • Huber M, With O, Schanda P, Verel R, Ernst M, Meier BH (2012) A supplementary coil for (2)H decoupling with commercial HCN MAS probes. J Magn Reson 214:76–80

    Article  ADS  Google Scholar 

  • Igumenova TI, McDermott AE (2005) Homo-nuclear 13C J-decoupling in uniformly 13C-enriched solid proteins. J Magn Reson 175:11–20

    Article  ADS  Google Scholar 

  • Kehlet C, Nielsen JT, Tosner Z, Nielsen NC (2011) Resolution-enhanced solid-state NMR (13)C-(13)C correlation spectroscopy by optimal control dipolar-driven spin-state-selective coherence transfer. J Phys Chem Lett 2:543–547

    Article  Google Scholar 

  • Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Herrmann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed Engl 50:11697–11701

    Article  Google Scholar 

  • Laage S, Lesage A, Emsley L, Bertini I, Felli IC, Pierattelli R, Pintacuda G (2009) Transverse-dephasing optimized homonuclear j-decoupling in solid-state NMR spectroscopy of uniformly 13C-labeled proteins. J Am Chem Soc 131:10816–10817

    Article  Google Scholar 

  • LeMaster DM, Kushlan DM (1996) Dynamical mapping of E-coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118:9255–9264

    Article  Google Scholar 

  • Levitt MH, Kolbert AC, Bielecki A, Ruben DJ (1993) High-resolution H-1-NMR in solids with frequency-switched multiple-pulse sequences. Solid State Nucl Mag 2:151–163

    Article  Google Scholar 

  • Lewandowski JR, Dumez JN, Akbey U, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211

    Article  Google Scholar 

  • Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93

    Article  ADS  Google Scholar 

  • Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011a) Structure calculation from unambiguous long-range amide and methyl (1)h-(1)h distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912

    Article  Google Scholar 

  • Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011b) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed Engl 50:4508–4512

    Article  Google Scholar 

  • Reif B, Griffin RG (2003) H-1 detected H-1, N-15 correlation spectroscopy in rotating solids. J Magn Reson 160:78–83

    Article  ADS  Google Scholar 

  • Sakellariou D, Lesage A, Hodgkinson P, Emsley L (2000) Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett 319:253–260

    Article  ADS  Google Scholar 

  • Schanda P, Huber M, Verel R, Ernst M, Meier BH (2009) Direct detection of (3 h)J(NC′) hydrogen-bond scalar couplings in proteins by solid-state NMR spectroscopy. Angew Chem Int Ed 48:9322–9325

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling: Waltz-16. J Magn Reson 52:335–338

    Google Scholar 

  • Shi L, Peng X, Ahmed MA, Edwards D, Brown LS, Ladizhansky V (2008) Resolution enhancement by homonuclear J-decoupling: application to three-dimensional solid-state magic angle spinning NMR spectroscopy. J Biomol NMR 41:9–15

    Article  Google Scholar 

  • Straus SK, Bremi T, Ernst RR (1996) Resolution enhancement by homonuclear J decoupling in solid-state MAS NMR. Chem Phys Lett 262:709–715

    Article  ADS  Google Scholar 

  • Tang M, Comellas G, Mueller LJ, Rienstra CM (2010) High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein. J Biomol NMR 48:103–111

    Article  Google Scholar 

  • Tian Y, Chen L, Niks D, Kaiser JM, Lai J, Rienstra CM, Dunn MF, Mueller LJ (2009) J-Based 3D sidechain correlation in solid-state proteins. Phys Chem Chem Phys 11:7078–7086

    Article  Google Scholar 

  • Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chem Phys Lett 314:443–450

    Article  ADS  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Vuister GW, Bax A (1992) Resolution enhancement and spectral editing of uniformly C-13-enriched proteins by homonuclear broad-band C-13 decoupling. J Magn Reson 98:428–435

    Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Leibniz- and the Helmholtz-Gemeinschaft, the DFG (Re1435, SFB449, SFB740) and the Bio-NMR project (European Commission’s Framework Program 7, project number: 261863). We are grateful to the Center for Integrated Protein Science Munich (CIPS-M) for financial support and to Bruker BioSpin for providing measurement time, especially to S. Wegner and G. Althoff for technical support. P.S. acknowledges funding from the French Research Agency (Contract ANR-10-PDOC-011-01 ProtDynByNMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asami, S., Szekely, K., Schanda, P. et al. Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54, 155–168 (2012). https://doi.org/10.1007/s10858-012-9659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9659-9

Keywords

Navigation