Skip to main content

Advertisement

Log in

Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D 15N- and 13C-edited NOESY-HSQC spectra of human ubiquitin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Armstrong GS, Mandelshtam VA, Shaka AJ, Bendiak B (2005) Rapid high-resolution four-dimensional NMR spectroscopy using the filter diagonalization method and its advantages for detailed structural elucidation of oligosaccharides. J Magn Reson 173:160–168

    Article  ADS  Google Scholar 

  • Barna JCJ, Tan SM, Laue ED (1988) Use of CLEAN in conjunction with selective data sampling for 2D NMR experiments. J Magn Reson 78:327–332

    Google Scholar 

  • Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2002) An updated set of basic linear algebra subprograms (BLAS). ACM Trans Math Soft 28:135–151

    Article  Google Scholar 

  • Bodenhausen G, Ernst RR (1981) The accordion experiment, a simple approach to three-dimensional NMR spectroscopy. J Magn Reson 45:367–373

    Google Scholar 

  • Bracewell RN (2000) The Fourier transform and its applications. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Coggins BE, Zhou P (2007) Sampling of the NMR time domain along concentric rings. J Magn Reson 184:207–221

    Article  ADS  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239

    Article  Google Scholar 

  • Ding K, Gronenborn AM (2002) Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins. J Magn Reson 156:262–268

    Article  ADS  Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Article  Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93:216–231

    Article  Google Scholar 

  • Frydman L, Scherf T, Lupulescu A (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci 99:15662–15858

    Article  Google Scholar 

  • Goddart TD, Kneller DG (1989–2008) SPARKY 3. University of California, San Francisco

  • Hiller S, Fiorito F, Wüthrich, Wider G (2005) Automated projection spectroscopy (APSY). P Natl Acad Sci USA 102:10876–10881

    Article  ADS  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley, New York

    Google Scholar 

  • Högbom J (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    ADS  Google Scholar 

  • Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45:283–294

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2007) Lineshapes and artifacts in multidimensional Fourier transform of arbitrary sampled NMR data sets. J Magn Reson 188:344–356

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W (2008a) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2008b) Determination of spin-spin couplings from ultrahigh resolution 3D NMR spectra obtained by optimized random sampling and multidimensional Fourier transformation. J Am Chem Soc 130:5404–5405

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W (2009) Narrow peaks and high dimensionalities: exploiting the advantages of random sampling. J Magn Reson 197:219–228

    Article  ADS  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Koźmiński W, Zhukov I (2003) Multiple quadrature detection in reduced dimensionality experiments. J Biomol NMR 26:157–166

    Article  Google Scholar 

  • Kupče E, Freeman R (2003a) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  • Kupče E, Freeman R (2003b) Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projection. J Biomol NMR 27:383–387

    Article  Google Scholar 

  • Kupče E, Freeman R (2005) Fast multidimensional NMR: radial sampling of evolution space. J Magn Reson 173:317–321

    Article  ADS  Google Scholar 

  • Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multidimensional decomposition. J Biomol NMR 33:1–14

    Article  Google Scholar 

  • Malmodin D, Billeter M (2005a) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487

    Article  Google Scholar 

  • Malmodin D, Billeter M (2005b) Signal identification in NMR spectra with coupled evolution periods. J Magn Reson 176:47–53

    Article  ADS  Google Scholar 

  • Mandelshtam VA, Taylor HS, Shaka AJ (1998) Application of the filter diagonalization method to one- and two-dimensional NMR spectra. J Magn Reson 133:304–312

    Article  ADS  Google Scholar 

  • Marion D (2005) Fast acquisition of NMR spectra using fourier transform of non-equispaced data. J Biomol NMR 32:141–150

    Article  Google Scholar 

  • Marion D (2006) Processing of ND NMR spectra sampled in polar coordinates: a simple fourier transform instead of reconstruction. J Biomol NMR 36:45–54

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656

    Article  Google Scholar 

  • Mobli M, Stern A, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105

    Article  ADS  Google Scholar 

  • Mobli M, Maciejewski MW, Gryk MR, Hoch JC (2007) Automatic maximum entropy spectral reconstruction in NMR. J Biomol NMR 39:133–139

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (2007) Numerical recipes in C, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  ADS  Google Scholar 

  • Schanda P, Melckebeke HV, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. P Natl Acad Sci USA 99:8009–8014

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005) Highresolution four-dimensional H-1-C-13 NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson 202:109–116

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Special thanks are addressed at Maxim Mayzel from Swedish NMR Centre for his help in using MDD package, and at prof. J.C. Hoch from University of Connecticut Health Center for providing access to Rowland NMR Toolkit v.3. This work was supported by grant number: N301 07131/2159, founded by Ministry of Science and Higher Education in years 2006-2009. Research cofinanced by the European Social Fund and State funds under the Integrated Regional Operational Programme, Measure 2.6 “Regional Innovation Strategies and transfer of knowledge”, Mazovian Voivodship project “Mazovian Ph.D. Scholarship”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiktor Koźmiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanek, J., Koźmiński, W. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J Biomol NMR 47, 65–77 (2010). https://doi.org/10.1007/s10858-010-9411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9411-2

Keywords

Navigation