Skip to main content
Log in

Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

HNCO/HNCACO type correlation experiments are an alternative for assignment of backbone resonances in extensively deuterated proteins in the solid-state, given the fact that line widths on the order of 14–17 Hz are achieved in the carbonyl dimension without the need of high power decoupling. The achieved resolution demonstrates that MAS solid-state NMR on extensively deuterated proteins is able to compete with solution-state NMR spectroscopy if proteins are investigated with correlation times τ c that exceed 25 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agarwal V, Faelber K, Schmieder P, Reif B (2009) High-resolution double-quantum deuterium magic angle spinning solid-state NMR spectroscopy of perdeuterated proteins. J Am Chem Soc 131:2–3

    Article  Google Scholar 

  • Akbey Ü, Lange S, Franks WT, Linser R, Rehbein K, Diehl A, van Rossum B-J, Reif B, Oschkinat H (2009) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Article  Google Scholar 

  • Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47

    Article  Google Scholar 

  • Chen L, Kaiser JM, Polenova T, Yang J, Rienstra CM, Mueller LJ (2007) Backbone assignments in solid-state proteins using J-based 3D heteronuclear correlation spectroscopy. J Am Chem Soc 129:10650–10651

    Article  Google Scholar 

  • Chevelkov V, Chen Z, Bermel W, Reif B (2005) Resolution enhancement in MAS solid-state NMR by application of 13C homonuclear scalar decoupling during acquisition. J Magn Reson 172:56–62

    Article  ADS  Google Scholar 

  • Chevelkov V, Rehbein K, Diel A, Reif B (2006) Ultra-high resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:1–5

    Article  Google Scholar 

  • Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200

    Article  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time threedimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13CO chemical shifts in 15N–13C-labeled proteins. J Magn Reson 97:213–217

    Google Scholar 

  • Cowans BA, Grutzner JB (1993) Examination of homogeneous broadening in solids via rotationally synchronized spin-echo NMR-spectroscopy. J Magn Reson Ser A 105:10–18

    Article  Google Scholar 

  • Dayie KT, Wagner G (1997) Carbonyl carbon probe of local mobility in 13C, 15N-enriched proteins using high-resolution nuclear magnetic resonance. J Am Chem Soc 119:7797–7806

    Article  Google Scholar 

  • Duma L, Hediger S, Brutscher B, Böckmann A, Emsley L (2003) Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc 125:11816–11817

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1989) Self-refocusing effect of 270° gaussian pulses. Applications to selective two-dimensional exchange spectroscopy. J Magn Reson 82:211–221

    Google Scholar 

  • Emsley L, Bodenhausen G (1990) Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165:469–476

    Article  ADS  Google Scholar 

  • Engelke J, Rüterjans H (1995) Sequential protein backbone resonance assignments using an improved 3D-HN(CA)CO pulse scheme. J Magn Reson B 109:318–322

    Article  Google Scholar 

  • Engelke J, Rüterjans H (1997) Backbone dynamics of proteins derived from carbonyl carbon relaxation times at 500, 600 and 800 MHz: application to ribonuclease T1. J Biomol NMR 9:63–78

    Article  Google Scholar 

  • Garroway AN (1977) Homogeneous and inhomogeneous nuclear spin echoes in organic solids: adamantane. J Magn Reson 28:365–371

    Google Scholar 

  • Goddard TD, Kneller DG SPARKY 3. University of California, San Francisco

  • Laage S, Lesage A, Emsley L, Bertini I, Felli IC, Pierattelli R, Pintacuda G (2009) Transverse-dephasing optimized homonuclear J-decoupling in solid-state NMR spectroscopy of uniformly 13C-labeled proteins. J Am Chem Soc 131:10816–10817

    Article  Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2006) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092

    Article  Google Scholar 

  • Lee D, Hilty C, Wider G, Wüthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 176:72–76

    Article  ADS  Google Scholar 

  • Linser R, Chevelkov V, Diehl A, Reif B (2007) Sensitivity enhancement using paramagnetic relaxation in MAS solid-state NMR of perdeuterated proteins. J Magn Reson 189:209–216

    Article  ADS  Google Scholar 

  • Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93

    Article  ADS  Google Scholar 

  • Linser R, Fink U, Reif B (2009) Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy. J Am Chem Soc 131:13703–13708

    Article  Google Scholar 

  • Mainz A, Jehle S, van Rossum B-J, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131:15968–15969

    Article  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the α-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Renner C, Baumgartner R, Noegel AA, Holak TA (1998) Backbone dynamics of the CDK Inhibitor p19INK4d studied by 15N NMR relaxation experiments at two field strengths. J Mol Biol 283:221–229

    Article  Google Scholar 

  • Schanda P, Huber M, Verel R, Ernst M, Meier BH (2009) Direct detection of 3h J NC’ hydrogen-bond scalar couplings in proteins by solid-state NMR spectroscopy. Angew Chem Int Ed 48:9322–9325

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    Google Scholar 

  • Tian Y, Chen L, Niks D, Kaiser JM, Lai J, Rienstra CM, Dunn MF, Mueller LJ (2009) J-Based 3D sidechain correlation in solid-state proteins. Phys Chem Chem Phys 11:7078–7086

    Article  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  Google Scholar 

  • Tugarinov V, Muhandiram R, Ayed A, Kay LE (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase G. J Am Chem Soc 124:10025–10035

    Article  Google Scholar 

  • Tugarinov V, Sprangers R, Kay LE (2009) Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J Am Chem Soc 129:1743–1750

    Article  Google Scholar 

  • Vanderhart DL, Earl WL, Garroway AN (1981) Resolution in C-13 NMR of organic-solids using high-power proton decoupling and magic-angle sample spinning. J Magn Reson 44:361–401

    Google Scholar 

  • Wasmer C, Lange A, Melckebeke Hv, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

  • Yamazaki T, Lee W, Revington M, Mattiello DL, Dahlquist FW, Arrowsmith CH, Kay LE (1994) An HNCA pulse scheme for the backbone assignment of 15 N,13C,2H-labeled proteins: application to a 37-kDa Trp repressor-DNA complex. J Am Chem Soc 116:6464–6465

    Article  Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007) Solid-state protein structure determination with proton-detected triple resonance 3D magic-angle spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383

    Article  Google Scholar 

Download references

Acknowledgments

We thank Peter Schmieder for continuous support. This research was supported by the Leibniz-Gemeinschaft (WGL) and the DFG (Re1435, SFB449, SFB740, FOR475). R. L. is a Kekulé scholar and acknowledges financial support by the Verband der Chemischen Industrie (VCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linser, R., Fink, U. & Reif, B. Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state. J Biomol NMR 47, 1–6 (2010). https://doi.org/10.1007/s10858-010-9404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-010-9404-1

Keywords

Navigation