Skip to main content
Log in

Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The human Y4 receptor, a class A G-protein coupled receptor (GPCR) primarily targeted by the pancreatic polypeptide (PP), is involved in a large number of physiologically important functions. This paper investigates a Y4 receptor fragment (N-TM1-TM2) comprising the N-terminal domain, the first two transmembrane (TM) helices and the first extracellular loop followed by a (His)6 tag, and addresses synthetic problems encountered when recombinantly producing such fragments from GPCRs in Escherichia coli. Rigorous purification and usage of the optimized detergent mixture 28 mM dodecylphosphocholine (DPC)/118 mM% 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) resulted in high quality TROSY spectra indicating protein conformational homogeneity. Almost complete assignment of the backbone, including all TM residue resonances was obtained. Data on internal backbone dynamics revealed a high secondary structure content for N-TM1-TM2. Secondary chemical shifts and sequential amide proton nuclear Overhauser effects defined the TM helices. Interestingly, the properties of the N-terminal domain of this large fragment are highly similar to those determined on the isolated N-terminal domain in the presence of DPC micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baneres JL, Martin A, Hullot P, Girard JP, Rossi JC, Parello J (2003) Structure-based analysis of GPCR function: conformational adaptation of both agonist and receptor upon leukotriene B4 binding to recombinant BLT1. J Mol Biol 329:801–814

    Article  Google Scholar 

  • Banères JL, Mesnier D, Martin A, Joubert L, Dumuis A, Bockaert J (2005) Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy. J Biol Chem 280:20253–20260

    Article  Google Scholar 

  • Bennett M, Yeagle JA, Maciejewski M, Ocampo J, Yeagle PL (2004) Stability of loops in the structure of lactose permease. Biochemistry 43:12829–12837

    Article  Google Scholar 

  • Boyd D, Schierle C, Beckwith J (1998) How many membrane proteins are there? Protein Sci 7:201–205

    Article  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  ADS  Google Scholar 

  • Cohen LS, Arshava B, Estephan R, Englander J, Kim H, Hauser M, Zerbe O, Ceruso M, Becker JM, Naider F (2008) Expression and biophysical analysis of two double-transmembrane domain-containing fragments from a yeast G protein-coupled receptor. Biopolymers 90:117–130

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Drew D, Froderberg L, Baars L, De Gier JW (2003) Assembly and overexpression of membrane proteins in Escherichia coli. Biochim Biophys Acta 1610:3–10

    Article  Google Scholar 

  • Drew D, Slotboom DJ, Friso G, Reda T, Genevaux P, Rapp M, Meindl-Beinker NM, Lambert W, Lerch M, Daley DO, Van Wijk KJ, Hirst J, Kunji E, De Gier JW (2005) A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci 14:2011–2017

    Article  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  ADS  Google Scholar 

  • Foord SM (2002) Receptor classification: post genome. Curr Opin Pharmacol 2:561–566

    Article  Google Scholar 

  • Getmanova E, Patel AB, Klein-Seetharaman J, Loewen MC, Reeves PJ, Friedman N, Sheves M, Smith SO, Khorana HG (2004) NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation. Biochemistry 43:1126–1133

    Article  Google Scholar 

  • Glover KJ, Whiles JA, Wu G, Yu N, Deems R, Struppe JO, Stark RE, Komives EA, Vold RR (2001) Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys J 81:2163–2171

    Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  Google Scholar 

  • Grisshammer R, White JF, Trinh LB, Shiloach J (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination–an overview. J Struct Funct Genomics 6:159–163

    Article  Google Scholar 

  • Harmar AJ (2001) Family-B G-protein-coupled receptors. Genome Biol 2:30131–3013.10

    Article  Google Scholar 

  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, Von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–381

    Article  ADS  Google Scholar 

  • Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–1030

    Article  ADS  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  Google Scholar 

  • Howell SC, Mesleh MF, Opella SJ (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44:5196–5206

    Article  Google Scholar 

  • Huang KS, Bayley H, Liao MJ, London E, Khorana HG (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem 256:3802–3809

    Google Scholar 

  • Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. Chem Med Chem 1:761–782

    Google Scholar 

  • Kahn TW, Engelman DM (1992) Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 31:6144–6151

    Article  Google Scholar 

  • Katragadda M, Alderfer JL, Yeagle PL (2001a) Assembly of a polytopic membrane protein structure from the solution structures of overlapping peptide fragments of bacteriorhodopsin. Biophys J 81:1029–1036

    Article  Google Scholar 

  • Katragadda M, Chopra A, Bennett M, Alderfer JL, Yeagle PL, Albert AD (2001b) Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin. J Pept Res 58:79–89

    Article  Google Scholar 

  • Kay LE, Keifer P, Saarien T (1992) Pure absorption gradient enhanced heteronuclear single-quantum correlation sepctroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Keeler J, Clowes RT, Davis AL, Laue ED (1994) Pulsed-field gradients: theory and practice. Methods Enzymol 239:145–207

    Article  Google Scholar 

  • Keller R (2004) The computer aided resonance assignment. CANTINA Verlag, Goldau

    Google Scholar 

  • Kiefer H, Krieger J, Olszewski JD, Von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35:16077–16084

    Article  Google Scholar 

  • Klammt C, Srivastava A, Eifler N, Junge F, Beyermann M, Schwarz D, Michel H, Dötsch V, Bernhard F (2007) Functional analysis of cell-free-produced human endothelin B receptor reveals transmembrane segment 1 as an essential area for ET-1 binding and homodimer formation. FEBS J 274:3257–3269

    Article  Google Scholar 

  • Klein-Seetharaman J, Reeves PJ, Loewen MC, Getmanova EV, Chung J, Schwalbe H, Wright PE, Khorana HG (2002) Solution NMR spectroscopy of [alpha-15N]lysine-labeled rhodopsin: The single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequence. Proc Natl Acad Sci USA 99:3452–3457

    Article  ADS  Google Scholar 

  • Klein-Seetharaman J, Yanamala NV, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG (2004) Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci USA 101:3409–3413

    Article  ADS  Google Scholar 

  • Krüger-Koplin RD, Sorgen PL, Krüger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28:43–57

    Article  Google Scholar 

  • Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016

    Article  Google Scholar 

  • Lee BK, Jung KS, Son C, Kim H, Verberkmoes NC, Arshava B, Naider F, Becker JM (2007) Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p. Prot Expr Purif 56:62–71

    Article  Google Scholar 

  • Lyukmanova EN, Shenkarev ZO, Paramonov AS, Sobol AG, Ovchinnikova TV, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2008) Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides. J Am Chem Soc 130:2140–2141

    Article  Google Scholar 

  • Ma D, Liu Z, Li L, Tang P, Xu Y (2005) Structure and dynamics of the second and third transmembrane domains of human glycine receptor. Biochemistry 44:8790–8800

    Article  Google Scholar 

  • Mackenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer—structure and implications. Science 276:131–133

    Article  Google Scholar 

  • Martin NP, Leavitt LM, Sommers CM, Dumont ME (1999) Assembly of G protein-coupled receptors from fragments: identification of functional receptors with discontinuities in each of the loops connecting transmembrane segments. Biochemistry 38:682–695

    Article  Google Scholar 

  • Massotte D (2003) G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. Biochim Biophys Acta 1610:77–89

    Article  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  Google Scholar 

  • Mobley CK, Myers JK, Hadziselimovic A, Ellis CD, Sanders CR (2007) Purification and initiation of structural characterization of human peripheral myelin protein 22, an integral membrane protein linked to peripheral neuropathies. Biochemistry 46:11185–11195

    Article  Google Scholar 

  • Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  ADS  Google Scholar 

  • Musial-Siwek M, Kendall DA, Yeagle PL (2008) Solution NMR of signal peptidase, a membrane protein. Biochim Biophys Acta 1778:937–944

    Article  Google Scholar 

  • Neumoin A, Arshava B, Becker J, Zerbe O, Naider F (2007) NMR studies in dodecylphosphocholine of a fragment containing the seventh transmembrane helix of a G-protein-coupled receptor from Saccharomyces cerevisiae. Biophys J 93:467–482

    Article  Google Scholar 

  • Noggle JH, Schirmer RE (1971) The nuclear overhauser effect—chemical applications. Academic Press, New York

    Google Scholar 

  • O’Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, Mcgrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11:41–52

    Article  Google Scholar 

  • Oxenoid K, Kim HJ, Jacob J, Sonnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049

    Article  Google Scholar 

  • Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, Mobley CK, Sanders CR, Ma L, Sönnichsen FD, Lee S, Howell SC, Opella SJ, Cross TA (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Func Genom 7:51–64

    Article  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  ADS  Google Scholar 

  • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768:3098–3106

    Article  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037

    Article  Google Scholar 

  • Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  ADS  Google Scholar 

  • Ridge KD, Lee SS, Yao LL (1995) In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci USA 92:3204–3208

    Article  ADS  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  ADS  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590

    Article  ADS  Google Scholar 

  • Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121:844–848

    Article  Google Scholar 

  • Sanders CR, Oxenoid K (2000) Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. Biochim Biophys Acta 1508:129–145

    Article  Google Scholar 

  • Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  Google Scholar 

  • Sanders C, Kuhn Hoffmann A, Gray D, Keyes M, Ellis CD (2004) French swimwear for membrane proteins. ChemBioChem 5:423–426

    Article  Google Scholar 

  • Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems fron the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  Google Scholar 

  • Sarramegn V, Muller I, Milon A, Talmont F (2006) Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. Cell Mol Life Sci 63:1149–1164

    Article  Google Scholar 

  • Schubert M, Kolbe M, Kessler B, Oesterhelt D, Schmieder P (2002) Heteronuclear multidimensional NMR spectroscopy of solubilized membrane proteins: resonance assignment of native bacteriorhodopsin. ChemBioChem 3:1019–1023

    Article  Google Scholar 

  • Shan X, Gardner K, Muhandiram D, Rao NS, Arrowsmith C, Kay LE (1996) Assignment of N-15, C-13(alpha), C-13(beta), and HN resonances in an N-15, C-13, H-2 labeled 64 kDa trp repressor-operator complex using triple-resonance NMR spectroscopy and H-2-decoupling. J Am Chem Soc 118:6570–6579

    Article  Google Scholar 

  • Stevens TJ, Arkin IT (2000) Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417–420

    Article  Google Scholar 

  • Tian C, Breyer RM, Kim HJ, Karra MD, Friedman DB, Karpay A, Sanders CR (2005) Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor. J Am Chem Soc 127:8010–8011

    Article  Google Scholar 

  • Tian C, Vanoye CG, Kang C, Welch RC, Kim HJ, George AL, Sanders CR (2007) Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome. Biochemistry 46:11459–11472

    Article  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, Mckusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, Mccawley S, Mcintosh T, Mcmullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, Mcdaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291: 1304–1351

    Google Scholar 

  • Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles—a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335

    Article  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker J, Moukhametzianov R, Edwards P, Henderson R, Leslie A, Tate C, Schertler G (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  ADS  Google Scholar 

  • Wedekind A, O’malley MA, Niebauer RT, Robinson AS (2006) Optimization of the human adenosine A2a receptor yields in Saccharomyces cerevisiae. Biotechnol Prog 22:1249–1255

    Article  Google Scholar 

  • Weigelt J (1998) Single scan, sensitivity- and gradient-enhanced TROSY for multidimensional NMR experiments. J Am Chem Soc 120:10778–10779

    Article  Google Scholar 

  • Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53

    Article  MATH  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

  • Wishart D, Sykes B, Richards F (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J Magn Reson Ser B 101:201–205

    Article  Google Scholar 

  • Wrubel W, Stochaj U, Ehring R (1994) Construction and in vivo analysis of new split lactose permeases. FEBS Lett 349:433–438

    Article  Google Scholar 

  • Yamazaki T, Lee W, Arrowsmith C, Muhandiram D, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H2-labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666

    Article  Google Scholar 

  • Yeagle PL, Salloum A, Chopra A, Bhawsar N, Ali L, Kuzmanovski G, Alderfer JL, Albert AD (2000) Structures of the intradiskal loops and amino terminus of the G-protein receptor, rhodopsin. J Pept Res 55:455–465

    Article  Google Scholar 

  • Yin D, Gavi S, Shumay E, Duell K, Konopka JB, Malbon CC, Wang HY (2005) Successful expression of a functional yeast G-protein-coupled receptor (Ste2) in mammalian cells. Biochem Biophys Res Commun 329:281–287

    Article  Google Scholar 

  • Zheng H, Zhao J, Sheng W, Xie XQ (2006) A transmembrane helix-bundle from G-protein coupled receptor CB2: biosynthesis, purification, and NMR characterization. Biopolymers 83:46–61

    Article  Google Scholar 

  • Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  ADS  Google Scholar 

  • Zou C, Kumaran S, Markovic S, Walser R, Zerbe O (2008) Studies of the structure of the N-terminal domain from the Y4 receptor, a G-protein coupled receptor, and its interaction with hormones from the NPY family. ChemBioChem 9:2276–2284

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank for financial support from the Swiss National Science Foundation (grant No. 3100A0-11173 to CZ), from the Alfred Werner Legat (to OZ) and from the National Institutes of Health (GM22086 to FN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Zerbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Naider, F. & Zerbe, O. Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. J Biomol NMR 42, 257–269 (2008). https://doi.org/10.1007/s10858-008-9281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9281-z

Keywords

Navigation