Skip to main content
Log in

Fast Assignment of 15N-HSQC Peaks using High-Resolution 3D HNcocaNH Experiments with Non-Uniform Sampling

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • N.S. Bhavesh S.C. Panchal R.V. Hosur (2001) Biochemistry 40 14727–14735 Occurrence Handle10.1021/bi015683p Occurrence Handle11732891

    Article  PubMed  Google Scholar 

  • G. Bodenhausen D.J. Ruben (1980) Chem. Phys. Lett. 69 85–189 Occurrence Handle10.1016/0009-2614(80)80041-8

    Article  Google Scholar 

  • C. Bracken A.G. Palmer SuffixIII J. Cavanagh (1997) J.␣Biomol. NMR 9 94–100 Occurrence Handle10.1023/A:1018679819693 Occurrence Handle9081546

    Article  PubMed  Google Scholar 

  • J. Cavanagh W.J. Fairbrother A.G. Palmer SuffixIII N.J. Skelton (1996) Protein NMR Spectroscopy: Principles and Practice Academic Press New York, NY

    Google Scholar 

  • L. Emsley G. Bodenhausen (1992) J. Magn. Reson. 97 135–148

    Google Scholar 

  • A.E. Ferentz G. Wagner (2000) Q. Rev. Biophys. 33 29–65 Occurrence Handle10.1017/S0033583500003589 Occurrence Handle11075388

    Article  PubMed  Google Scholar 

  • R. Freeman E. Kupce (2003) J. Biomol. NMR 27 101–113 Occurrence Handle10.1023/A:1024960302926 Occurrence Handle12962120

    Article  PubMed  Google Scholar 

  • A.M. Gronenborn D.R. Filpula N.Z. Essig A. Achari M. Whitlow P.T. Wingfield G.M. Clore (1991) Science 253 657–661 Occurrence Handle1871600

    PubMed  Google Scholar 

  • S. Grzesiek J. Anglister A. Bax (1993a) J. Magn. Reson. B101 114–119

    Google Scholar 

  • S. Grzesiek J. Anglister H. Ren A. Bax (1993b) J. Am. Chem. Soc. 115 4369–4370 Occurrence Handle10.1021/ja00063a068

    Article  Google Scholar 

  • S. Grzesiek A. Bax (1993a) J. Am. Chem. Soc. 115 12593–12594 Occurrence Handle10.1021/ja00079a052

    Article  Google Scholar 

  • S. Grzesiek A. Bax (1993b) J. Biomol. NMR 3 185–204

    Google Scholar 

  • J.C. Hoch A.S. Stern (1996) NMR Data Processing Wiley-Liss New York, NY

    Google Scholar 

  • T. Ikegami S. Sato M. Wälchli Y. Kyogoku M. Shirakawa (1997) J. Magn. Reson. 124 214–217 Occurrence Handle10.1006/jmre.1996.7497 Occurrence Handle9424308

    Article  PubMed  Google Scholar 

  • J. Juneja N.S. Bhavesh J.B. Udgaonkar R.V. Hosur (2002) Biochemistry 41 9885–9899 Occurrence Handle10.1021/bi026034w Occurrence Handle12146954

    Article  PubMed  Google Scholar 

  • R.L.J. Keller (2004) The Computer Aided Resonance Assignment Tutorial Cantina Verlag Goldau, CH

    Google Scholar 

  • T.M. Logan E.T. Olejniczak R.X. Xu S.W. Fesik (1992) FEBS Lett. 314 413–418 Occurrence Handle10.1016/0014-5793(92)81517-P Occurrence Handle1281793

    Article  PubMed  Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J.␣Magn. Reson., 85, 393–399

  • H. Matsuo E. Kupce H. Li G. Wagner (1996) J. Magn. Reson. B 111 194–198 Occurrence Handle10.1006/jmrb.1996.0082 Occurrence Handle8661281

    Article  PubMed  Google Scholar 

  • G.A. Morris R. Freeman (1979) J. Am. Chem. Soc. 101 760–762 Occurrence Handle10.1021/ja00497a058

    Article  Google Scholar 

  • S.C. Panchal N.S. Bhavesh R.V. Hosur (2001) J. Biomol. NMR 20 135–147 Occurrence Handle10.1023/A:1011239023422 Occurrence Handle11495245

    Article  PubMed  Google Scholar 

  • K. Pervushin R. Riek G. Wider K. Wüthrich (1997) Proc. Natl. Acad. Sci. USA 94 12366–12371 Occurrence Handle10.1073/pnas.94.23.12366 Occurrence Handle9356455

    Article  PubMed  Google Scholar 

  • M. Piotto V. Saudek V. Sklenár (1992) J. Biomol. NMR 2 661–665 Occurrence Handle10.1007/BF02192855 Occurrence Handle1490109

    Article  PubMed  Google Scholar 

  • D. Rovnyak D.P. Frueh M. Sastry Z.Y. Sun A.S. Stern J.C. Hoch G. Wagner (2004a) J. Magn. Reson. 170 15–21 Occurrence Handle10.1016/j.jmr.2004.05.016

    Article  Google Scholar 

  • D. Rovnyak J.C. Hoch A.S. Stern G. Wagner (2004b) J. Biomol. NMR 30 1–10 Occurrence Handle10.1023/B:JNMR.0000042946.04002.19

    Article  Google Scholar 

  • P. Schmieder A.S. Stern G. Wagner J.C. Hoch (1993) J.␣Biomol. NMR 3 569–576 Occurrence Handle8219741

    PubMed  Google Scholar 

  • P. Schmieder A.S. Stern G. Wagner J.C. Hoch (1994) J.␣Biomol. NMR 4 483–490 Occurrence Handle10.1007/BF00156615 Occurrence Handle8075537

    Article  PubMed  Google Scholar 

  • A.J. Shaka P.B. Barker R. Freeman (1985) J. Magn. Reson. 64 547–552

    Google Scholar 

  • A.J. Shaka C.J. Lee A. Pines (1988) J. Magn. Reson. 77 274–293

    Google Scholar 

  • J.P. Simorre B. Brutscher M.S. Caffrey D. Marion (1994) J. Biomol. NMR 4 325–333 Occurrence Handle10.1007/BF00179343 Occurrence Handle8019140

    Article  PubMed  Google Scholar 

  • V. Sklenár M. Piotto R. Leppik V. Saudek (1993) J.␣Magn. Reson. A102 241–245 Occurrence Handle10.1006/jmra.1993.1098

    Article  Google Scholar 

  • Sun, Z.Y., Rovnyak, D., Park, S., Stern, A.S., Hoch, J.C. and Wagner, G. (2005) J. Biomol. NMR, 32, 55–60

    Google Scholar 

  • T. Szyperski G. Wider J.H. Bushweller K. Wüthrich (1993) J. Am. Chem. Soc. 115 9307–9308 Occurrence Handle10.1021/ja00073a064

    Article  Google Scholar 

  • R. Weisemann H. Rüterjans W. Bermel (1993) J. Biomol. NMR 3 113–120 Occurrence Handle10.1007/BF00242479 Occurrence Handle8448431

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Health (grants GM47467 and RR00995). We are grateful to Dr M. Roehrl for the GFL peptide test sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZY.J., Frueh, D.P., Selenko, P. et al. Fast Assignment of 15N-HSQC Peaks using High-Resolution 3D HNcocaNH Experiments with Non-Uniform Sampling. J Biomol NMR 33, 43–50 (2005). https://doi.org/10.1007/s10858-005-1284-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-1284-4

Key words

Navigation