Skip to main content

Advertisement

Log in

Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Objective

The fabrication of bioactive coatings on metallic implants to enhance osseointegration has become a topic of general interest in orthopedics and dentistry. Hydroxyapatite (HA) coating has been shown to induce bone formation and promote bone-implant integration. Unfortunately, poor mechanical performance has hindered this from becoming a favorable coating material. The majority of present studies have focused in incorporating different elements into HA coatings to improve mechanical properties. In recent years, tantalum (Ta) has received increasing attention due to its excellent biocompatibility and corrosion resistance. The aim of on the present study was to investigate the fabrication and biological performance of Ta-incorporated HA coatings.

Methods

Ta-incorporated HA coatings were fabricated using the plasma spray technique on a titanium substrate, and the surface characteristics and mechanical properties were examined. In addition, the effects of Ta-incorporated HA coatings on the biological behavior of mesenchymal stem cells (BMSCs) were investigated.

Results

Ta-incorporated HA coatings with microporous structure had higher roughness and wettability. In addition, the bonding strength of Ta/HA coatings with the substrate was substantially superior to HA coatings. Furthermore, Ta-incorporated HA coatings not only facilitated initial cell adhesion and faster proliferation, but also promoted the osteogenic differentiation of BMSCs.

Conclusion

These results indicate that the incorporation of Ta could improve mechanical performance and increase the osteogenic activity of HA coatings. The Ta-incorporated HA coating fabricated by plasma spraying is expected to be a promising bio-coating material for metallic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kulkarni M, Patil-Sen Y, Junkar I, Kulkarni CV, Lorenzetti M, Iglič A. Wettability studies of topologically distinct titanium surfaces. Colloids Surf B Biointerfaces. 2015;129:47–53.

    Article  CAS  Google Scholar 

  2. Salou L, Hoornaert A, Stanovici J, Briand S, Louarn G, Layrolle P. Comparative bone tissue integration of nanostructured and microroughened dental implants. Nanomedicine. 2015;10:741–51.

    Article  CAS  Google Scholar 

  3. Park JW, Kwon TG, Suh JY. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur. Clin Oral Implants Res. 2013;24:706–9.

    Article  Google Scholar 

  4. Liu P, Hao Y, Zhao Y, Yuan Z, Ding Y, Cai K. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Colloids Surf B Biointerfaces. 2017;160:110–6.

    Article  CAS  Google Scholar 

  5. Guillot R, Pignot-Paintrand I, Lavaud J, Decambron A, Bourgeois E, Josserand V, et al. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle. Acta Biomater. 2016;36:310–22.

    Article  CAS  Google Scholar 

  6. Mas-Moruno C, Fraioli R, Rechenmacher F, Neubauer S, Kapp TG, Kessler H. αvβ3-or α5β1-integrin-selective peptidomimetics for surface coating. Angew Chem Int Ed. 2016;55:7048–67.

    Article  CAS  Google Scholar 

  7. Thorfve A, Lindahl C, Xia W, Igawa K, Lindahl A, Thomsen P, et al. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta Biomater. 2014;10:1451–62.

    Article  CAS  Google Scholar 

  8. Rau JV, Cacciotti I, Laureti S, Fosca M, Varvaro G, Latini A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J Biomed Mater Res B Appl Biomater. 2015;103:1621–31.

    Article  CAS  Google Scholar 

  9. Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, et al. Acomparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl. 2016;62:226–32.

    Article  CAS  Google Scholar 

  10. Shi LY, Wang A, Zang FZ, Wang JX, Pan XW, Chen HJ. Tantalum-coated pedicle screws enhance implant integration. Colloids Surf B Biointerfaces 2017;160:22–32.

    Article  CAS  Google Scholar 

  11. Frandsen CJ, Brammer KS, Noh K, Johnston G, Jin S. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Mater Sci Eng C. 2014;37:332–41.

    Article  CAS  Google Scholar 

  12. Roy M, Balla VK, Bandyopadhyay A, Bose S. MgO doped tantalum coating on Ti: microstructural study and biocompatibility evaluation. ACS Appl Mater Interfaces. 2012;4:4577–80.

    Google Scholar 

  13. Wang L, Hu X, Ma X, Ma Z, Zhang Y, Lu Y, et al. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Colloids Surf B Biointerfaces. 2016;148:440–52.

    Article  CAS  Google Scholar 

  14. Costa DO, Prowse PD, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, et al. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials. 2013;34:7215–26.

    Article  CAS  Google Scholar 

  15. Ben-Nissan B, Choi AH, Roest R, Latella BA, Bendavid A. Adhesion of hydroxyapatite on titanium medical implants. In: Mucalo M, editor. Hydroxyapatite(HAp) for biomedical applications. Cambridge: Woodhead Publishing Series in Biomaterials; 2015. p. 21–52.

    Chapter  Google Scholar 

  16. Tao ZS, Bai BL, He XW, Liu W, Li H, Zhou Q, et al. A comparative study of strontium-substituted hydroxyapatite coating on implant’s osseointegration for osteopenic rats. Med Biol Eng Comput. 2016;54:1959–68.

    Article  Google Scholar 

  17. Vahabzadeh S, Roy M, Bandyopadhyay A, Bose S. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater. 2015;17:47–55.

    Article  CAS  Google Scholar 

  18. Li X, Li Y, Liao Y, Li J, Zhang L, Hu J. The effect of magnesium-incorporated hydroxyapatite coating on titanium implant fixation in ovariectomized rats. Int J Oral Maxillofac Implants. 2014;29:196–202.

    Article  CAS  Google Scholar 

  19. Yang H, Yan X, Ling M, Xiong Z, Ou C, Lu W. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications. Int J Mol Sci 2015;16:6113–23.

    Article  CAS  Google Scholar 

  20. Zhong Z, Ma J. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications. Biomater Appl 2017;32:399–409.

    Article  CAS  Google Scholar 

  21. El-Wassefy NA, Reicha FM, Aref NS. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate. Int J Implant Dent 2017;3:39.

    Article  CAS  Google Scholar 

  22. Lou W, Dong Y, Zhang H, Jin Y, Hu X, Ma J, et al. Preparation and characterization of lanthanum-incorporated hydroxyapatite coatings on titanium substrates. Int J Mol Sci. 2015;16:21070–86.

    Article  CAS  Google Scholar 

  23. Swain S, Rautray TR. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field. J Mater Sci Mater Med. 2017;28:160.

    Article  CAS  Google Scholar 

  24. Kang JI, Son MK, Choe HC. Hydroxyapatite coatings containing Mn and Si on the oxidized Ti-6Al-4V alloy for dental applications. J Nanosci Nanotechnol. 2018;18:833–6.

    Article  CAS  Google Scholar 

  25. Ma J, Sun W, Gao F, Guo W, Wang Y, Li Z. Porous tantalum implant in treating osteonecrosis of the femoral head: still a viable option? Sci Rep. 2016;21:28227.

    Article  Google Scholar 

  26. Olsen M, Lewis PM, Morrison Z, McKee MD, Waddell JP, Schemitsch EH. Total hip arthroplasty following failure of core decompression and tantalum rod implantation. Bone Jt J. 2016;98-B:1175–9.

    Article  CAS  Google Scholar 

  27. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 2010;6:3349–59.

    Article  CAS  Google Scholar 

  28. Davies JE, Mendes VC, Ko JC, Ajami E. Topographic scale-range synergy at the functional bone/implant interface. Biomaterials. 2014;35:25–35.

    Article  CAS  Google Scholar 

  29. Davies JE, Ajami E, Moineddin R, Mendes VC. he roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. Biomaterials. 2013;34:3535–46.

    Article  CAS  Google Scholar 

  30. Razavi S, Karbasi S, Morshed M, Zarkesh Esfahani H, Golozar M, Vaezifar S. Cell Attachment and proliferation of human adipose-derived stem cells on PLGA/chitosan electrospun nano-biocomposite. Cell J. 2015;17:429–37.

    Google Scholar 

  31. Li G, Cao H, Zhang W, Ding X, Yang G, Qiao Y, et al. Enhanced osseointegration of hierarchical micro/nanotopographic titanium fabricated by microarc oxidation and electrochemical treatment. ACS Appl Mater Interfaces 2016;8:3840–52.

    Article  CAS  Google Scholar 

  32. Buijnsters JG, Zhong R, Tsyntsaru N, Celis JP. Surface wettability of macroporous anodized aluminum oxide. ACS Appl Mater Interfaces. 2013;5:3224–33.

    Article  CAS  Google Scholar 

  33. Rakngarm Nimkerdphol A, Otsuka Y, Mutoh Y. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF). J Mech Behav Biomed Mater. 2014;36:98–108.

    Article  CAS  Google Scholar 

  34. Baiula M, Galletti P, Martelli G, Soldati R, Belvisi L, Civera M, et al. New β-lactam derivatives modulate cell adhesion and signaling mediated by RGD-binding and leukocyte integrins. J Med Chem. 2016;59:9721–42.

    Article  CAS  Google Scholar 

  35. Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials. 2012;33:2629–41.

    Article  CAS  Google Scholar 

  36. Ren D, Wei F, Hu L, Yang S, Wang C, Yuan X. Phosphorylation of Runx2, induced by cyclic mechanical tension via ERK1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts. J Cell Physiol. 2015;230:2426–36.

    Article  CAS  Google Scholar 

  37. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;26:16009.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National High Technology Research and Development Program of China (No. 2015AA033502), Natural Science Foundation of Beijing (No. 7182125), National Natural Science Foundation of China (No. 81271180) and Natural Science Foundation of Beijing (No. 2017000062586G232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Chen Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RJ., Wang, X., He, HX. et al. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties. J Mater Sci: Mater Med 30, 111 (2019). https://doi.org/10.1007/s10856-019-6308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6308-9

Navigation