Skip to main content

Advertisement

Log in

Electrophoretic bottom up design of chitosan patches for topical drug delivery

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Clobetasol propionate (CP) is a high-potency corticosteroid, representing the standard of care for the symptomatic treatment of different skin disorders as well as oral mucosal diseases. Several topical delivery systems are available for treating oral lesions, but the ideal one is still lacking. In this work, we propose a novel class of chitosan (CS) patches, loaded with CP, for the topical treatment of inflammatory chronic oral diseases. Chitosan patches have been fabricated via electrophoretic deposition (EPD), by using a one-pot approach in order to load controlled quantity of CP. Optimized structures showed a water uptake in the range of 200–360% and mechanical properties that allow the design of flexible patches in wet state (E = 0.6 MPa and σbr = 0.55 MPa). Ultraviolet-visible (UV-Vis) spectroscopy was used for the evaluation of both loading and release profile of CP in CS patches. The CP loading has been tuned by adjusting CP concentration in deposition bath—in the range 0.002–0.12 mg cm−2—while releasing curves show an in vitro CP burst of about 80% in the first two hours. Overall, the obtained properties paved the way for the application of this new class of patches for the local oral release of CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campisi G, Giandalia G, De Caro V, Di Liberto C, Aricò P, Giannola LI. A new delivery system of clobetasol-17-propionate (lipid-loaded microspheres 0.025%) compared with a conventional formulation (lipophilic ointment in a hydrophilic phase 0.025%) in topical treatment of atrophic/erosive oral lichen planus. A Phase IV, rand. Br J Dermatol. 2004;150:984–90. https://doi.org/10.1111/j.1365-2133.2004.05943.x.

    Article  CAS  Google Scholar 

  2. Hu FQ, Yuan H, Zhang HH, Fang M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm. 2002;239:121–8. https://doi.org/10.1016/S0378-5173(02)00081-9.

    Article  CAS  Google Scholar 

  3. Cheng S, Kirtschig G, Cooper S, Silcocks P, Thornhill M, Murphy R. Interventions for erosive lichen planus affecting mucosal sites. In: R Murphy, editor. Cochrane Database Syst Rev. Chichester, UK: John Wiley & Sons, Ltd; 2009. https://doi.org/10.1002/14651858.CD008092.

  4. Agarwal S, Aggarwal S. Mucoadhesive polymeric platform for drug delivery: a comprehensive review. Curr Drug Deliv. 2015;12:139–56.

    Article  CAS  Google Scholar 

  5. Gonzalez-Moles MA, Morales P, Rodriguez-Archilla A, Isabel IR-A, Gonzalez-Moles S. Treatment of severe chronic oral erosive lesions with clobetasol propionate in aqueous solution, Oral Surgery. Oral Med Oral Pathol Oral Radiol Endodontology. 2002;93:264–70. https://doi.org/10.1067/MOE.2002.120522.

    Article  Google Scholar 

  6. Lo Muzio L, della Valle A, Mignogna MD, Pannone G, Bucci P, Bucci E, et al. The treatment of oral aphthous ulceration or erosive lichen planus with topical clobetasol propionate in three preparations: a clinical and pilot study on 54 patients. J Oral Pathol Med. 2001;30:611–7. https://doi.org/10.1034/j.1600-0714.2001.301006.x.

    Article  CAS  Google Scholar 

  7. Lozada-Nur F, Miranda C, Maliksi R. Double-blind clinical trial of 0.05% clobetasol proprionate ointment in orabase and 0.05% fluocinonide ointment in orabase in the treatment of patients with oral vesiculoerosive diseases. Oral Surg, Oral Med Oral Pathol. 1994;77:598–604. https://doi.org/10.1016/0030-4220(94)90318-2.

    Article  CAS  Google Scholar 

  8. Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm. 2006;314:83–89. https://doi.org/10.1016/j.ijpharm.2006.01.040.

    Article  CAS  Google Scholar 

  9. Şenyiǧit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142:368–73. https://doi.org/10.1016/j.jconrel.2009.11.013.

    Article  CAS  Google Scholar 

  10. Van Tuyl SAC, Slee PHTJ. Are the effects of local treatment with glucocorticoids only local? Neth J Med. 2002;60:130–2.

    Google Scholar 

  11. Decani S, Federighi V, Baruzzi E, Sardella A, Lodi G. Iatrogenic Cushing’s syndrome and topical steroid therapy: case series and review of the literature. J Dermatol Treat. 2014;25:495–500. https://doi.org/10.3109/09546634.2012.755252.

    Article  Google Scholar 

  12. Varoni EM, Molteni A, Sardella A, Carrassi A, Di Candia D, Gigli F. et al. Pharmacokinetics study about topical clobetasol on oral mucosa. J Oral Pathol Med. 2012;41:255–60.

    Article  CAS  Google Scholar 

  13. Varoni EM, Altomare L, Cochis A, Ghalayaniesfahani A, Cigada A, Rimondini L, et al. Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomed Mater. 2016;00:1–13. https://doi.org/10.1088/1748-6041/11/2/025018.

    Article  Google Scholar 

  14. Yang C-C, Lin C-C, Yen S-K. Electrochemical deposition of vancomycin/chitosan composite on Ti alloy. J Electrochem Soc. 2011;158:E152–58. https://doi.org/10.1149/2.105112jes.

    Article  CAS  Google Scholar 

  15. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan, MP et al. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants, ACS Appl Mater Interfaces. 6 (2014). https://doi.org/10.1021/am5014166.

    Article  CAS  Google Scholar 

  16. Simchi A, Pishbin F, Boccaccini AR. Electrophoretic deposition of chitosan. Mater Lett. 2009;63:2253–6. https://doi.org/10.1016/j.matlet.2009.07.046.

    Article  CAS  Google Scholar 

  17. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33. https://doi.org/10.1016/j.addr.2007.03.012.

    Article  CAS  Google Scholar 

  18. Xu R. Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology. 2008;6:112–5. https://doi.org/10.1016/j.partic.2007.12.002.

    Article  CAS  Google Scholar 

  19. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J. Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci. 2007;309:194–224. https://doi.org/10.1016/J.JCIS.2006.12.075.

    Article  CAS  Google Scholar 

  20. Isfahani AG, Ghorbani M. Electrophoretic deposition of Ni/SiO2 nanocomposite coating: fabrication process and tribological and corrosion properties. J Nano Res. 2013;26:45–51. https://doi.org/10.4028/www.scientific.net/JNanoR.26.45.

    Article  Google Scholar 

  21. Ghalayani Esfahani A, Lazazzera B, Draghi L, Farè S, Chiesa R, De Nardo L, et al. Bactericidal activity of Gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol. 2018. https://doi.org/10.1111/jam.14133.

    Article  Google Scholar 

  22. Esfahani AG, Soleimanzade M, Campiglio CE, Federici A, Altomare L, Draghi L, et al. Hierarchical Microchannel Architecture in Chitosan/Bioactive Glass Scaffolds via Electrophoretic Deposition Positive-Replica. J Biomed Mater Res Part A. 2019. https://doi.org/10.1002/jbm.a.36660.

  23. Johnson NR, Wang Y. Drug delivery systems for wound healing. Curr Pharm Biotechnol. 2015;16:621–9.

    Article  CAS  Google Scholar 

  24. Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11:559–74. https://doi.org/10.1016/J.AJPS.2016.05.004.

    Article  Google Scholar 

  25. Needleman IG, Smales FC, Martin GP. An investigation of bioadhesion for periodontal and oral mucosal drug delivery. J Clin Periodontol. 1997;24:394–400. https://doi.org/10.1111/j.1600-051X.1997.tb00203.x.

    Article  CAS  Google Scholar 

  26. Senel S, Ikinci G, Kaş S, Yousefi-Rad A, Sargon MF, Hincal AA. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000;193:197–203.

    Article  CAS  Google Scholar 

  27. Altomare L, Draghi L, Chiesa R, De Nardo L. Morphology tuning of chitosan films via electrochemical deposition. Mater Lett. 2012;78:18–21. https://doi.org/10.1016/j.matlet.2012.03.035.

    Article  CAS  Google Scholar 

  28. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52:1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001.

    Article  CAS  Google Scholar 

  29. Runet SEB, Azinet LAB. Electromigration of chitosan D-glucosamine and oligomers in dilute aqueous solutions. J Agric Food Chem. 2006;54:6352–7. https://doi.org/10.1021/jf060165c.

    Article  Google Scholar 

  30. Krueger HG, Knote A, Schindler U, Kern H. Composite ceramic metal coatings by means of combined electrophoretic deposition. Mater Sci. 2004;39:839–44.

    Article  CAS  Google Scholar 

  31. Powers RW. The electrophoretic forming of beta‐alumina ceramic. J Electrochem Soc. 1975;122:490–500. https://doi.org/10.1149/1.2134246.

    Article  CAS  Google Scholar 

  32. Ferrari B, Sánchez-Herencia AJ, Moreno R. Aqueous electrophoretic deposition of AL2O3/ZrO2 layered ceramics. Mater Lett. 1998;35:370–4. https://doi.org/10.1016/S0167-577X(97)00280-2.

    Article  CAS  Google Scholar 

  33. Mathews T, Rabu N, Sellar J, Muddle B. Fabrication of La1−xSrxGa1−yMgyO3−(x + y)/2 thin films by electrophoretic deposition and its conductivity measurement. Solid State Ion. 2000;128:111–5. https://doi.org/10.1016/S0167-2738(99)00308-2.

    Article  CAS  Google Scholar 

  34. Shao Z, Vollrath F. The effect of solvents on the contraction and mechanical properties of spider silk. Polym (Guildf). 1999;40:1799–806. https://doi.org/10.1016/S0032-3861(98)00266-3.

    Article  CAS  Google Scholar 

  35. Bendak A, El-Marsafi SM. Effects of chemical modifications on polyester. Fibres, J Islam Acad Sci. 1991;4:275–84.

    Google Scholar 

  36. Vollrath F, Edmonds DT. Modulation of the mechanical properties of spider silk by coating with water. Nature. 1989;340:305–7. https://doi.org/10.1038/340305a0.

    Article  Google Scholar 

  37. Lin LH, Edmonds DT, Vollrath F. Structural engineering of an orb-spider’s web. Nature. 1995;373:146–8. https://doi.org/10.1038/373146a0.

    Article  CAS  Google Scholar 

  38. İkinci G, Şenel S, Akıncıbay H, Kaş S, Erciş S, Wilson C, et al. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm. 2002;235:121–7. https://doi.org/10.1016/S0378-5173(01)00974-7.

    Article  Google Scholar 

Download references

Acknowledgements

AGE and LDN would like to thank Dario Picenoni (RIP) for providing the morphology SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ghalayani Esfahani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalayani Esfahani, A., Altomare, L., Varoni, E.M. et al. Electrophoretic bottom up design of chitosan patches for topical drug delivery. J Mater Sci: Mater Med 30, 40 (2019). https://doi.org/10.1007/s10856-019-6242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6242-x

Navigation