Skip to main content

Advertisement

Log in

Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

There is an increasing clinical need to design dental restorative materials that combine excellent mechanical property and anti-biofilm activity. In the current study, photocurable polycation functionalized nanodiamond (QND) was synthesized and proposed as novel filler for dental resins. By reason of increased repulsive force between nanoparticles and enhanced compatibility with resin matrix, QND dispersed uniformly in reinforced resins, which would help to transfer stress and deformation from the matrix to fillers more efficiently, resulting in a significant improvement in mechanical properties. Notably, the Vickers’s hardness, flexural strength and flexural modulus of resins containing 1.0 wt% QND were 44.5, 36.1 and 41.3% higher than that of control, respectively. The antibacterial activity against Streptococcus mutans (S. mutans) showed that QND-incorporated resins produced anti-adhesive property due to their hydrophilic surfaces and could suppress bacterial growth as a result of the contact-killing effect of embedded nanocomposites. As the synergistic effect of anti-adhesive and bactericidal performance, resins loading 1.0~1.5 wt% QNDs displayed excellent anti-biofilm activity. Meanwhile, the results of macrophage cytotoxicity showed that the proliferation of RAW 264.7 cells remained 84.3%, even at a concentration of 1.0 wt% QNDs after 7-day incubation. Therefore, the QND-containing dental resin with the combination of high mechanical property, bacteria-repellent capability and antibacterial performance holds great potential as a restorative material based on this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ferracane JL. Resin composite--state of the art. Dent Mater. 2011;27:29–38. https://doi.org/10.1016/j.dental.2010.10.020.

    Article  CAS  Google Scholar 

  2. Melo MA, Orrego S, Weir MD, Xu HH, Arola DD. Designing multiagent dental materials for enhanced resistance to biofilm damage at the bonded interface. ACS Appl Mater Interf. 2016;8:11779–87. https://doi.org/10.1021/acsami.6b01923.

    Article  CAS  Google Scholar 

  3. Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015;16:1–13. https://doi.org/10.1016/j.actbio.2015.01.018.

    Article  Google Scholar 

  4. Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31:459–67. https://doi.org/10.1016/j.tibtech.2013.05.010.

    Article  CAS  Google Scholar 

  5. Makvandi P, Ghaemy M, Ghadiri AA, Mohseni M. Photocurable, antimicrobial quaternary ammonium-modified nanosilica. J Dent Res. 2015;94:1401–7. https://doi.org/10.1177/0022034515599973.

    Article  CAS  Google Scholar 

  6. Echazú MIA, Tuttolomondo MV, Foglia ML, Mebert AM, Alvarez GS, Desimone MF. Advances in collagen, chitosan and silica biomaterials for oral tissue regeneration: from basics to clinical trials. J Mater Chem B. 2016;4:6913–29. https://doi.org/10.1039/c6tb02108e.

    Article  Google Scholar 

  7. Chen S, Gururaj S, Xia W, Engqvist H. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements. J Mater Sci Mater Med. 2016;27:172 https://doi.org/10.1007/s10856-016-5785-3.

    Article  Google Scholar 

  8. Besinis A, Peralta TD, Tredwin CJ, Handy RD. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefit. ACS Nano 2015;9:2255–89.

    Article  CAS  Google Scholar 

  9. Reineck P, Lau DWM, Wilson ER, Fox K, Field MR, Deeleepojananan C, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017;11:10924–34. https://doi.org/10.1021/acsnano.7b04647.

    Article  CAS  Google Scholar 

  10. Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, et al. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 2012;33:5067–75. https://doi.org/10.1016/j.biomaterials.2012.03.063.

    Article  CAS  Google Scholar 

  11. Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent Mater J. 2011;30:222–31. https://doi.org/10.4012/dmj.2010-135.

    Article  CAS  Google Scholar 

  12. Ayatollahi MR, Alishahi E, Shadlou S. Mechanical behavior of nanodiamond/epoxy nanocomposites. Int J Fract. 2011;170:95–100. https://doi.org/10.1007/s10704-011-9600-3.

    Article  CAS  Google Scholar 

  13. Zhai YJ, Wang ZC, Huang W, Huang JJ, Wang YY, Zhao YQ. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Mater Sci Eng A. 2011;528:7295–7300. https://doi.org/10.1016/j.msea.2011.06.053.

    Article  CAS  Google Scholar 

  14. Maitra U, Prasad KE, Ramamurty U, Rao CNR. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Commun. 2009;149:1693–7. https://doi.org/10.1016/j.ssc.2009.06.017.

    Article  CAS  Google Scholar 

  15. Habib E, Wang R, Zhu XX. Monodisperse silica-filled composite restoratives mechanical and light transmission properties. Dent Mater. 2017;33:280–7. https://doi.org/10.1016/j.dental.2016.12.008.

    Article  CAS  Google Scholar 

  16. Basiuk EV, Santamaría-Bonfil A, Meza-Laguna V, Gromovoy TY, Alvares-Zauco E, Contreras-Torres FF, et al. Solvent-free covalent functionalization of nanodiamond with amines. Appl Surf Sci. 2013;275:324–34. https://doi.org/10.1016/j.apsusc.2012.12.062.

    Article  CAS  Google Scholar 

  17. Haleem YA, Liu D, Chen W, Wang C, Hong C, He Z, et al. Surface functionalization and structure characterizations of nanodiamond and its epoxy based nanocomposites. Compos Part B-Eng. 2015;78:480–7. https://doi.org/10.1016/j.compositesb.2015.04.012.

    Article  CAS  Google Scholar 

  18. Chang IP, Hwang KC, Ho JA, Lin CC, Hwu RJ, Horng JC. Facile surface functionalization of nanodiamonds. Langmuir. 2010;26:3685–9. https://doi.org/10.1021/la903162v.

    Article  CAS  Google Scholar 

  19. Takimoto T, Chano T, Shimizu S, Okabe H, Ito M, Morita M, et al. Preparation of fluorescent diamond nanoparticles stably dispersed under a physiological environment through multistep organic transformations. Chem Mater. 2010;22:3462–71. https://doi.org/10.1021/cm100566v.

    Article  CAS  Google Scholar 

  20. Khanal M, Turcheniuk V, Barras A, Rosay E, Bande O, Siriwardena A, et al. Toward multifunctional “clickable” diamond nanoparticles. Langmuir. 2015;31:3926–33. https://doi.org/10.1021/acs.langmuir.5b00643.

    Article  CAS  Google Scholar 

  21. Zhang F, Song Q, Huang X, Li F, Wang K, Tang Y, et al. A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone. Tissue Eng ACS Appl Mater Interf. 2016;8:1087–97. https://doi.org/10.1021/acsami.5b09394.

    Article  CAS  Google Scholar 

  22. Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32:87–94. https://doi.org/10.1016/j.biomaterials.2010.08.090.

    Article  Google Scholar 

  23. Cao W, Peng X, Chen X, Wang X, Jin F, Li Q, et al. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity. J Mater Sci. 2017;52:1856–67. https://doi.org/10.1007/s10853-016-0475-6.

    Article  CAS  Google Scholar 

  24. Peng X, Cao W, Jin F, Wang X, Li Q, Chen H, et al. Immobilization of N-halamine based polycation on nanodiamonds for high dispersity and enhanced biocidal activity. J Nanosci Nanotechnol. 2017;17:3126 https://doi.org/10.1166/jnn.2017.14544.

    Article  Google Scholar 

  25. Cheng L, Zhang K, Zhang N, Melo MAS, Weir MD, Zhou XD, et al. Developing a new generation of antimicrobial and bioactive dental resins. J Dent Res. 2017;96:855–63. https://doi.org/10.1177/0022034517709739.

    Article  CAS  Google Scholar 

  26. Dolmatov VY. Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev. 2001;70:607–26.

    Article  CAS  Google Scholar 

  27. Zhang X, Jia C, Qiao X, Liu T, Sun K. Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polym Test. 2016;54:118–25. https://doi.org/10.1016/j.polymertesting. 2016.07.006.

    Article  CAS  Google Scholar 

  28. Cho HB, Nguyen ST, Nakayama T, Huynh MTT, Suematsu H, Suzuki T, et al. Oxidation of nanodiamonds and modulation of their assembly in polymer-based nanohybrids by field-inducement. J Mater Sci. 2013;48:4151–62. https://doi.org/10.1007/s10853-013-7228-6.

    Article  CAS  Google Scholar 

  29. Martín R, Heydorn PCn, Alvaro M, Garcia H. General strategy for high-density covalent functionalization of diamond nanoparticles using Fenton chemistry. Chem Mater. 2009;21:4505–14. https://doi.org/10.1021/cm9012602.

    Article  Google Scholar 

  30. Cao W, Zhang Y, Wang X, Chen Y, Li Q, Xing X, et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Sci Mater Med. 2017;28:103 https://doi.org/10.1007/s10856-017-5918-3.

    Article  Google Scholar 

  31. Liang Y, Ozawa M, Krueger A. A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano. 2009;3:2288–96.

    Article  CAS  Google Scholar 

  32. Barras A, Lyskawa J, Szunerits S, Woisel P, Boukherroub R. Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir. 2011;27:12451–7. https://doi.org/10.1021/la202571d.

    Article  CAS  Google Scholar 

  33. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128:9798–808. https://doi.org/10.1021/ja061442z.

    Article  CAS  Google Scholar 

  34. de Castro DT, Valente ML, Agnelli JA, Lovato da Silva CH, Watanabe E, Siqueira RL, et al. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent. 2016;115:238–46. https://doi.org/10.1016/j.prosdent.2015.09.003.

    Article  Google Scholar 

  35. Han Z, Zhu B, Chen R, Huang Z, Zhu C, Zhang X. Effect of silver-supported materials on the mechanical and antibacterial properties of reinforced acrylic resin composites. Mater Des. 2015;65:1245–52. https://doi.org/10.1016/j.matdes.2014.10.023.

    Article  CAS  Google Scholar 

  36. Wang R, Zhang M, Liu F, Bao S, Wu T, Jiang X, et al. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater Sci Eng C. 2015;50:266–73. https://doi.org/10.1016/j.msec.2015.01.090.

    Article  CAS  Google Scholar 

  37. Antonucci JM, Zeiger DN, Tang K, Lin-Gibson S, Fowler BO, Lin NJ. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater. 2012;28:219–28. https://doi.org/10.1016/j.dental.2011.10.004.

    Article  CAS  Google Scholar 

  38. Lee JH, El-Fiqi A, Jo JK, Kim DA, Kim SC, Jun SK, et al. Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater. 2016;32:1564–74. https://doi.org/10.1016/j.dental.2016.09.001.

    Article  CAS  Google Scholar 

  39. Xu A, Zhou L, Deng Y, Chen X, Xiong X, Deng F, et al. A carboxymethyl chitosan and peptide-decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants. J Mater Chem B. 2016;4:1878–90. https://doi.org/10.1039/c5tb02782a.

    Article  CAS  Google Scholar 

  40. Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro stretococcal adhesion to dental alloys. J Mater Sci Mater Med. 2000;11:637–742.

    Article  CAS  Google Scholar 

  41. Cheng X, Qu T, Ma C, Xiang D, Yu Q, Liu X. Bioactive mono-dispersed nanospheres with long-term antibacterial effects for endodontic sealing. J Mater Chem B. 2017;5:1195–204. https://doi.org/10.1039/c6tb02819e.

    Article  CAS  Google Scholar 

  42. Song R, Zhong Z, Lin L. Evaluation of chitosan quaternary ammonium salt-modified resin denture base material. Int J Biol Macromol. 2016;85:102–10. https://doi.org/10.1016/j.ijbiomac.2015.12.052.

    Article  CAS  Google Scholar 

  43. He J, Soderling E, Lassila LV, Vallittu PK. Synthesis of antibacterial and radio-opaque dimethacrylate monomers and their potential application in dental resin. Dent Mater. 2014;30:968–76. https://doi.org/10.1016/j.dental.2014.05.013.

    Article  CAS  Google Scholar 

  44. Hoshika T, Nishitani Y, Yoshiyama M, Key WO 3rd, Brantley W, Agee KA, et al. Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins. Dent Mater. 2014;30:1213 https://doi.org/10.1016/j.dental.2014.08.365.

    Article  CAS  Google Scholar 

  45. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dent Mater. 2017;33:765–74. https://doi.org/10.1016/j.dental.2017.04.008.

    Article  CAS  Google Scholar 

  46. Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent. 2014;111:318–26. https://doi.org/10.1016/j.prosdent.2013.07.017.

    Article  CAS  Google Scholar 

  47. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, et al. Universal dynamic conductivity and quantized visible opacity of suspended graphene. Science. 2008;320:1308. https://doi.org/10.1126/science.1156965.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Fund from the Natural Science Foundation of China (No. 81460107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Xiao or Xiaodong Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Zhang, Y., Wang, X. et al. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci: Mater Med 29, 162 (2018). https://doi.org/10.1007/s10856-018-6172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6172-z

Navigation