Skip to main content
Log in

Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

L-Leucine (Leu) is a hydrophobic natural amino acid and can polymerize into poly-L-Leucine (PLeu) to be an excellent biocompatible material. In this paper, a hyperbranched copolymer polyethyleneimine-g-poly-L-leucine (PEI-g-PLeu) was synthesized by ring-opening polymerization with leucine NCA as monomer and PEI as initiator, which will be used as drug and gene co-delivery system for cancer therapy. To characterize the transfection efficiency in vitro, pGL3 as the reporter gene was loaded in PEI-g-PLeu to form complexes. Doxorubicin (DOX) with cis-aconitic anhydride linker (CAD) and calf thymus DNA (as model DNA) were co-loaded in PEI-g-PLeu to obtain PEI-g-PLeu/DNA/CAD nanoparticles to measure Zeta potentials and particle sizes. Lastly, CAD and modified Bc12-shRNA(as therapeutic gene) were co-loaded in PEI-g-PLeu to get PEI-g-PLeu/CAD/DNA complexes. Our finding revealed when PEI and PLeu with the molar ratio of 1:240, and PEI-g-PLeu and DNA with the mass ratio of 1:5, PEI-g-PLeu/CAD/DNA had negligible cytotoxicity with equivalent gene transfaction efficiency compared with PEI25k. As a result, PEI-g-PLeu/CAD/DNA was a promising drug and gene co-delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, et al. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials . 2013;34:3912–23.

    Article  CAS  Google Scholar 

  2. Callery MP. Biological therapies for pancreatic cancer. Gastroenterology. 2007;132:2607–8.

    Article  Google Scholar 

  3. Li Y, Thambi T, Lee DS. Co‐delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv Healthc Mater. 2017;7:1700886.

  4. Zamani M, Rostami M, Aghajanzadeh M, Manjili HK, Rostamizadeh K, Danafar H. Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci. 2017;1:1–12.

    Google Scholar 

  5. Boussif O, Lezoualc’H F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92(16):7297.

  6. Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996;3:1074–80.

    CAS  Google Scholar 

  7. Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58:467.

    Article  CAS  Google Scholar 

  8. Mcneil SE., Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:264–71.

  9. Ur RZ, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7:3767–77.

    Article  Google Scholar 

  10. Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA. 1999;96(9):5177–81.

  11. Godbey WT, Wu KK, Mikos AG, Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    Article  CAS  Google Scholar 

  12. Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther. 2000;7:31–4.

    Article  CAS  Google Scholar 

  13. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60:247–66.

    Article  CAS  Google Scholar 

  14. Vicennati P, Giuliano A, Ortaggi G, Masotti A. Polyethylenimine In medicinal chemistry. Curr Med Chem. 2008;15:2826–39.

    Article  CAS  Google Scholar 

  15. Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2010;18:3203–24.

    Article  Google Scholar 

  16. Han CK, Kang HJ, You HB. A reducible polycationic gene vector derived from thiolated low molecular weight branched polyethyleneimine linked by 2-iminothiolane. Biomaterials. 2011;32:1193–203.

    Article  Google Scholar 

  17. Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.

    Article  CAS  Google Scholar 

  18. Ahn CH, Chae SY, Bae YH, Kim SW. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release. 2002;80:273–82.

    Article  CAS  Google Scholar 

  19. Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, et al. Mechanistic investigation of poly(ethyleneimine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130:57–63.

    Article  CAS  Google Scholar 

  20. Lin JT, Zou Y, Wang C, Zhong YC, Zhao Y, Zhu HE, et al. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. Mater Sci Eng C Mater Biol Appl. 2014;44:430–9.

    Article  CAS  Google Scholar 

  21. Zhu QL, Zhou Y, Guan M, Zhou XF, Yang SD, Liu Y, et al. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials . 2014;35:5965–76.

    Article  CAS  Google Scholar 

  22. Fu CL, Lin L, Shi HL, Zheng DX, Wang W, Gao SQ, Zhao YF, Tian HY, Zhu XJ, Chen XS. Hydrophobic poly (amino acid) modified PEI mediated delivery of rev-casp-3 for cancer therapy. Biomaterials. 2012;33:4589–96.

    Article  CAS  Google Scholar 

  23. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4:4539.

    Article  CAS  Google Scholar 

  24. Dong DW, Xiang B, Gao W, Yang ZZ, Li JQ, Qi XR. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Biomaterials . 2013;34:4849–59.

    Article  CAS  Google Scholar 

  25. Rostami M, Aghajanzadeh M, Zamani M, Manjili HK, Danafar H. Sono-chemical synthesis and characterization of Fe3O4@mTiOi2-GO nanocarriers for dual-targeted colon drug delivery. Res Chem Intermed. 2017;44:1889–1904.

  26. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P. Doxorubicin and siRNA codelivery via chitosan-coated pH-responsive mixed micellar polyplexes for enhanced cancer therapy in multidrug-resistant tumors. Mol Pharm. 2016;13:4179.

    Article  CAS  Google Scholar 

  27. Guan X, Li Y, Jiao Z, Lin L, Chen J, Guo Z, et al. Codelivery of antitumor drug and gene by a pH-sensitive charge-conversion system. ACS Appl Mater Interfaces. 2015;7:3207–15.

    Article  CAS  Google Scholar 

  28. Oh H, Jo HY, Park J, Kim DE, Cho JY, Kim PH, et al. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials . 2016;6:141.

    Article  Google Scholar 

  29. Xu C, Tian H, Sun H, Jiao Z, Zhang Y, Chen X. A pH sensitive co-delivery system of siRNA and doxorubicin for pulmonary administration to B16F10 metastatic lung cancer. RSC Adv. 2015;5:103380–5.

    Article  CAS  Google Scholar 

  30. Song HW, Bettegowda A, Oliver D, Yan W, Phan MH, de Rooij DG, et al. shRNA off-target effects in vivo: impaired endogenous siRNA expression and spermatogenic defects. PLoS ONE. 2015;10:e0118549.

    Article  Google Scholar 

  31. Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011;6:1130–46.

    Article  CAS  Google Scholar 

  32. Guan X, Li Y, Jiao Z, Chen J, Guo Z, Tian H, et al. pH-sensitive charge-conversion system for doxorubicin delivery. Acta Biomater. 2013;9:7672–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhui Li or Huayu Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, X., Zhang, J. et al. Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery. J Mater Sci: Mater Med 29, 47 (2018). https://doi.org/10.1007/s10856-018-6057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6057-1

Navigation