Skip to main content
Log in

Self-assembled polyelectrolyte complexes films as efficient compression coating layers for controlled-releasing tablets

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Currently, polysaccharide-based hydrogels are widely studied macromolecular networks to modify drug dissolution from controlled-releasing matrix tablets. Among them, polyelectrolyte complexes (PEC) films consisted of chitosan (CS) and sodium alginate (SA) could be obtained via spontaneously assembling under physiological gastrointestinal environment. Here, we utilized these self-assembled PEC films as an efficient coating materials to develop controlled-released matrix tablets through compression coating process, with paracetamol (APAP) as model drug. The constitutive and morphology characteristic studies on these PEC films illustrated that the mixture of CS and SA with the weight ratio of 1:1 would be an promising outer layer for compression-coating tablets. In addition, the in vitro drug releasing behavior experiments demonstrated that the optimized compression coating tablets displayed satisfied zero-order drug releasing profits. Furthermore, the in vivo pharmacokinetic studies of these APAP loaded compression-coated tablets in New Zealand rabbits gave that the Tmax (12.32 ± 1.05 h) was significantly prolonged (p < 0.01), compared to that (0.89 ± 0.26 h) of common APAP tablets (Jinfuning®) after oral administration. These studies suggest that the compression-coated tablets with self-assembled PEC film as coating outer layer may be a promising strategy for peroral controlled release delivery system of water soluble drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peppas NA. Hydrogels in medicine and pharmacy polymers. II. Boca Raton, FL: CRC Press; 1987. p. 184

    Google Scholar 

  2. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119(1):5–24. doi:10.1016/j.jconrel.2007.01.004

    Article  Google Scholar 

  3. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52. doi:10.1016/s0939-6411(03)00160-7

    Article  Google Scholar 

  4. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14. doi:10.1016/j.jconrel.2006.04.017

    Article  Google Scholar 

  5. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99. doi:10.1016/j.addr.2009.07.019

    Article  Google Scholar 

  6. Kim JH, Ramasamy T, Tran TH, Choi JY, Cho HJ, Yong CS, et al. Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery. Asian J Pharm Sci. 2014;9(4):191–8. doi:10.1016/j.ajps.2014.05.001

    Article  Google Scholar 

  7. Wu QX, Zhang QL, Lin DQ, Yao SJ. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. Int J Pharm. 2013;455(1-2):124–31. doi:10.1016/j.ijpharm.2013.07.048

    Article  Google Scholar 

  8. Zhang T, Mao S, Sun W. Design and in vitro evaluation of a film-controlled dosage form self-converted from monolithic tablet in gastrointestinal environment. J Pharm Sci. 2010;99(11):4678–90. doi:10.1002/jps.22163

    Article  Google Scholar 

  9. Waterman KC, Fergione MB. Press-coating of immediate release powders onto coated controlled release tablets with adhesives. J Control Release. 2003;89(3):387–95. doi:10.1016/s0168-3659(03)00132-9

    Article  Google Scholar 

  10. Picker KM. Influence of tableting on the enzymatic activity of different [alpha]-amylases using various excipients. Eur J Pharm Biopharm. 2002;53:181–5.

    Article  Google Scholar 

  11. Lopes CM, Sousa Lobo JM, Pinto JF, PC C. Compressed matrix coretablet as a quick/slow dual-component delivery system containing ibuprofen. AAPS PharmSciTech. 2007;8:195–202.

    Article  Google Scholar 

  12. Siepe S, Lueckel B, Kramer A, Ries A, Gurny R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm. 2006;316(1-2):14–20. doi:10.1016/j.ijpharm.2006.02.021

    Article  Google Scholar 

  13. Qi X, Chen H, Rui Y, Yang F, Ma N, Wu Z. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent. Int J Pharm. 2015;489(1-2):210–7. doi:10.1016/j.ijpharm.2015.05.007

    Article  Google Scholar 

  14. Tarvainen M, Sutinen R, Peltonen S, Mikkonen H, Maunus J, Vähä-Heikkilä K, et al. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur J Pharm Biopharm. 2003;19(5):363–71. doi:10.1016/s0928-0987(03)00137-4

    Google Scholar 

  15. Rekhi GS, Jambhekar SS. Ethylcellulose—a polymer review. Drug Dev Ind Pharm. 1995;21(1):61–77. doi:10.3109/03639049509048096

    Article  Google Scholar 

  16. Pani NR, Nath LK. Development of controlled release tablet by optimizing HPMC: consideration of theoretical release and RSM. Carbohydr Polym. 2014;104:238–45. doi:10.1016/j.carbpol.2014.01.037

    Article  Google Scholar 

  17. Nakano M, Ohmori N, Ogata A, Sugimoto K, Tobino Y, Iwaoku R, et al. Sustained release of theophylline from hydroxypropylcellulose tablets. J Pharm Sci. 1983;72(4):378–80. doi:10.1002/jps.2600720414

    Article  Google Scholar 

  18. Vandelli MA, Leo E, Foni F, Bernabei MT. Drug release from perforated matrices containing hydroxypropylcellulose. Int J Pharm. 1998;171(2):165–75. doi:10.1016/S0378-5173(98)00208-7

    Article  Google Scholar 

  19. Nakano M, Ohmori N, Ogata A, Sugimoto K, Tobino Y, Iwaoku R, et al. Sustained release of theophylline from hydroxypropylcellulose tablets. J Pharm Sci. 1983;72:378–80. doi:10.1208/s12249-015-0359-0

    Article  Google Scholar 

  20. Tavakol M, Vasheghani-Farahani E, Dolatabadi-Farahani T, Hashemi-Najafabadi S. Sulfasalazine release from alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan. Carbohyd Polym. 2009;77(2):326–30. doi:10.1016/j.carbpol.2009.01.005

    Article  Google Scholar 

  21. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–25. doi:10.1016/j.ejpb.2007.09.009

    Google Scholar 

  22. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67. doi:10.1016/j.ijbiomac.2013.12.017

    Article  Google Scholar 

  23. Rawlins MD, Henderson DB, Hijab AR. Pharmacokinetics of paracetamol (acetaminophen) after intravenous and oral administration. Eur J Clinical Pharm. 1977;11:283–6.

    Article  Google Scholar 

  24. Obeidat WM, Nokhodchi A, Alkhatib H. Evaluation of matrix tablets based on Eudragit(R)E100/Carbopol(R)971P combinations for controlled release and improved compaction properties of water soluble model drug paracetamol. AAPS PharmSciTech. 2015;16(5):1169–79. doi:10.1208/s12249-015-0301-5

    Article  Google Scholar 

  25. Tadros MI. Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur J Pharm Biopharm. 2010;74(2):332–9. doi:10.1016/j.ejpb.2009.11.010

    Article  Google Scholar 

  26. Donbrow M, Samuelov Y. Zero order drug delivery from double-layered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixtures. J Pharm Pharmacol. 1980;32:463–70

    Article  Google Scholar 

  27. Ritger PL, Peppas NA. A simple equation for description of solute release.II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42

    Article  Google Scholar 

  28. Zhang C, Xu M, Tao X, Tang J, Liu Z, Zhang Y, et al. A floating multiparticulate system for ofloxacin based on a multilayer structure: in vitro and in vivo evaluation. Int J Pharm. 2012;430(1-2):141–50. doi:10.1016/j.ijpharm.2012.04.013

    Article  Google Scholar 

  29. Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, et al. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int J Pharm. 2007;333(1-2):143–51. doi:10.1016/j.ijpharm.2006.11.067

    Article  Google Scholar 

  30. Huanbutta K, Terada K, Sriamornsak P, Nunthanid J. Advanced technologies for assessment of polymer swelling and erosion behaviors in pharmaceutical aspect. Eur J Pharm Biopharm. 2013;83(3):315–21. doi:10.1016/j.ejpb.2012.10.002

    Article  Google Scholar 

  31. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2–19. doi:10.1016/j.jconrel.2011.04.002

    Article  Google Scholar 

  32. Bueno CZ, Moraes ÂM, de Sousa HC, Braga MEM. Effects of supercritical carbon dioxide processing on the properties of chitosan–alginate membranes. J Supercrit Fluid. 2016;112:128–35. doi:10.1016/j.supflu.2015.10.001

    Article  Google Scholar 

  33. Takahashi T, Takayam K, Machida Y, Nagai T. Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm. 1990;61:35–41. doi:10.1016/j.jconrel.2015.05.271

    Article  Google Scholar 

  34. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72:1189–91. doi:10.1016/j.ijbiomac.2015.03.024

    Article  Google Scholar 

  35. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (multi) for microcomputer. J Pharmacobiodyn. 1981;4:879–85. doi:10.1016/j.ijpharm.2010.09.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 81402859).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghong Wu or Xiaole Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Huo, M., Sen Chaudhuri, A. et al. Self-assembled polyelectrolyte complexes films as efficient compression coating layers for controlled-releasing tablets. J Mater Sci: Mater Med 28, 67 (2017). https://doi.org/10.1007/s10856-017-5886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5886-7

Navigation