Skip to main content
Log in

Vasculogenic potential evaluation of bottom-up, PCL scaffolds guiding early angiogenesis in tissue regeneration

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Vascularization is a key factor in the successful integration of tissue engineered (TE) grafts inside the host body. Biological functions of the newly formed tissue depend, in fact, on a reliable and fast spread of the vascular network inside the scaffold. In this study, we propose a technique for evaluating vascularization in TE constructs assembled by a bottom-up approach. The rational, ordered assembly of building blocks (BBs) into a 3D scaffold can improve vessel penetration, and—unlike most current technologies—is compatible with the insertion of different elements that can be designed independently (e.g. structural units, growth factor depots etc.). Poly(ε-caprolactone) scaffolds composed of orderly and randomly assembled sintered microspheres were used to assess the degree of vascularization in a pilot in vivo study. Scaffolds were implanted in a rat subcutaneous pocket model, and retrieved after 7 days. We introduce three quantitative factors as a measure of vascularization: the total percentage of vascularization, the vessels diameter distribution and the vascular penetration depth. These parameters were derived by image analysis of microcomputed tomographic scans of biological specimens perfused with a radiopaque polymer. The outcome of this study suggests that the rational assembly of BBs helps the onset and organization of a fully functional vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Velazquez OC. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg. 2007;45 Suppl A:A39–47. doi:10.1016/j.jvs.2007.02.068.

  2. Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 2001;61(3):253–70.

    Article  Google Scholar 

  3. Adair TH, Montani JP. Angiogenesis. Integrated systems physiology: from molecule to function to disease. San Rafael; 2010.

  4. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100(6):782–94. doi:10.1161/01.RES.0000259593.07661.1e.

    Article  Google Scholar 

  5. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95. doi:10.1038/74651.

    Article  Google Scholar 

  6. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 2005;23(7):879–84. doi:10.1038/nbt1109.

    Article  Google Scholar 

  7. Ring A, Tilkorn D, Ottomann C, Geomelas M, Steinstraesser L, Langer S, et al. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model. Int Wound J. 2011;8(2):112–7. doi:10.1111/j.1742-481X.2010.00742.x.

    Article  Google Scholar 

  8. Singh S, Wu BM, Dunn JC. Enhancing angiogenesis alleviates hypoxia and improves engraftment of enteric cells in polycaprolactone scaffolds. J Tissue Eng Regen Med. 2013;7(12):925–33. doi:10.1002/term.1484.

    Article  Google Scholar 

  9. Biazar E, Heidari M, Asefnejad A, Montazeri N. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. Int J Nanomed. 2011;6:631–9. doi:10.2147/IJN.S17218.

    Article  Google Scholar 

  10. Kuddannaya S, Chuah YJ, Lee MH, Menon NV, Kang Y, Zhang Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2013;5(19):9777–84. doi:10.1021/am402903e.

    Article  Google Scholar 

  11. Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200. doi:10.1146/annurev-bioeng-071812-152428.

    Article  Google Scholar 

  12. Feng B, Jinkang Z, Zhen W, Jianxi L, Jiang C, Jian L, et al. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater. 2011;6(1):015007. doi:10.1088/1748-6041/6/1/015007.

    Article  Google Scholar 

  13. Woodruff MA, Lange C, Reichert J, Berner A, Chen FL, Fratzl P, et al. Bone tissue engineering: from bench to bedside. Mater Today. 2012;15(10):430–5.

    Article  Google Scholar 

  14. Choi SW, Zhang Y, Macewan MR, Xia Y. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv Healthc Mater. 2013;2(1):145–54. doi:10.1002/adhm.201200106.

    Article  Google Scholar 

  15. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76. doi:10.1146/annurev-bioeng-071813-105155.

    Article  Google Scholar 

  16. Elbert DL. Bottom-up tissue engineering. Curr Opin Biotechnol. 2011;22(5):674–80. doi:10.1016/j.copbio.2011.04.001.

    Article  Google Scholar 

  17. Lantada AD, Morgado PL. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu Rev Biomed Eng. 2012;14:73–96. doi:10.1146/annurev-bioeng-071811-150112.

    Article  Google Scholar 

  18. Lima MJ, Pirraco RP, Sousa RA, Neves NM, Marques AP, Bhattacharya M, et al. Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomed Microdevices. 2014;16(1):69–78. doi:10.1007/s10544-013-9806-4.

    Article  Google Scholar 

  19. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1(2):022001. doi:10.1088/1758-5082/1/2/022001.

    Article  Google Scholar 

  20. Nichol JW, Khademhosseini A. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter. 2009;5(7):1312–9. doi:10.1039/b814285h.

    Article  Google Scholar 

  21. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77(7):527–43.

    Article  Google Scholar 

  22. Muller YA, Heiring C, Misselwitz R, Welfle K, Welfle H. The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor. J Biol Chem. 2002;277(45):43410–6. doi:10.1074/jbc.M206438200.

    Article  Google Scholar 

  23. Guldberg RE, Duvall CL, Peister A, Oest ME, Lin AS, Palmer AW, et al. 3D imaging of tissue integration with porous biomaterials. Biomaterials. 2008;29(28):3757–61. doi:10.1016/j.biomaterials.2008.06.018.

    Article  Google Scholar 

  24. Schmidt C, Bezuidenhout D, Beck M, Van der Merwe E, Zilla P, Davies N. Rapid three-dimensional quantification of VEGF-induced scaffold neovascularisation by microcomputed tomography. Biomaterials. 2009;30(30):5959–68. doi:10.1016/j.biomaterials.2009.07.044.

    Article  Google Scholar 

  25. Vasquez SX, Gao F, Su F, Grijalva V, Pope J, Martin B, et al. Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One. 2011;6(4):e19099. doi:10.1371/journal.pone.0019099.

    Article  Google Scholar 

  26. Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials. 2008;29(36):4800–7. doi:10.1016/j.biomaterials.2008.09.007.

    Article  Google Scholar 

  27. Luciani A, Guarino V, Ambrosio L, Netti PA. Solvent and melting induced microspheres sintering techniques: a comparative study of morphology and mechanical properties. J Mater Sci Mater Med. 2011;22(9):2019–28. doi:10.1007/s10856-011-4390-8.

    Article  Google Scholar 

  28. Bordes C, Freville V, Ruffin E, Marote P, Gauvrit JY, Briancon S, et al. Determination of poly(epsilon-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm. 2010;383(1–2):236–43. doi:10.1016/j.ijpharm.2009.09.023.

    Article  Google Scholar 

  29. Oh SH, Lee JH. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater. 2013;8(1):014101.

    Article  Google Scholar 

  30. Yeo A, Wong WJ, Khoo HH, Teoh SH. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. J Biomed Mater Res A. 2010;92(1):311–21. doi:10.1002/jbm.a.32366.

    Article  Google Scholar 

  31. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60. doi:10.3758/Brm.41.4.1149.

    Article  Google Scholar 

  32. Song C, Wang P, Makse HA. A phase diagram for jammed matter. Nature. 2008;453(7195):629–32. doi:10.1038/nature06981.

    Article  Google Scholar 

  33. Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467–76. doi:10.1016/j.actbio.2010.02.002.

    Article  Google Scholar 

  34. Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials. 2008;29:1518–25.

    Article  Google Scholar 

  35. Borden M, Attawia M, Khan Y, Laurencin CT. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002;23:551–9.

    Article  Google Scholar 

  36. Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI. Laurencin CT Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomat. 2010;6:3457–70.

    Article  Google Scholar 

  37. Bhamidipati M, Sridharan B, Scurto AM, Detamore MS. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4892–9.

    Article  Google Scholar 

  38. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S. Microwave Sintered 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. J Tissue Eng Regen Med. 2013;7(8):631–64.

    Article  Google Scholar 

  39. Tiainen A, Lyngstadaas SP, Ellingsen JE, Haugen HJ. Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med. 2010;21(10):2783–92.

    Article  Google Scholar 

  40. Wong HM, Chu PK, Leung FKL, Cheung KMC. Keith Luk DK, Yeung KWK. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog Nat Sci. 2014;24(5):561–7.

    Article  Google Scholar 

  41. Chang KY, Hung LH, Chu IM, Ko CS, Lee YD. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J Biomed Mater Res A. 2010;92(2):712–23.

    Article  Google Scholar 

  42. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules. 2008;9(8):2097–103.

    Article  Google Scholar 

  43. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011;32(32):8108–17.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Center of Biotechnologies of the A.O.R.N. “A. Cardarelli” for the kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rossi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the Directive 2010/63/EU.

Additional information

L. Rossi and C. Attanasio have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, L., Attanasio, C., Vilardi, E. et al. Vasculogenic potential evaluation of bottom-up, PCL scaffolds guiding early angiogenesis in tissue regeneration. J Mater Sci: Mater Med 27, 107 (2016). https://doi.org/10.1007/s10856-016-5720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5720-7

Keywords

Navigation