Skip to main content
Log in

Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397–425.

    Article  Google Scholar 

  2. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36(7–8):630–44.

    Article  Google Scholar 

  3. Otomo-Corgel J. Osteoporosis and osteopenia: implications for periodontal and implant therapy. Periodontol. 2000;2012(59):111–39.

    Google Scholar 

  4. Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. Oxidative stress in bone remodelling and disease. Trends Mol Med. 2009;15(10):468–77.

    Article  Google Scholar 

  5. Wang X, Gu CS, He W, Ye XL, Chen HL, Zhang XD, et al. Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: the central role of oxidative stress. Biochimie. 2012;94(8):1705–17.

    Article  Google Scholar 

  6. Lee DH, Lim BS, Lee YK, Yang HC. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol. 2006;22(1):39–46.

    Article  Google Scholar 

  7. Jung WW. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int J Mol Med. 2014;33(5):1327–34.

    Google Scholar 

  8. Ball JP, Mound BA, Monsalve AG, Nino JC, Allen JB. Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering. J Biomed Mater Res A. 2015;103(1):8–15.

    Article  Google Scholar 

  9. Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, et al. Nanoceria as antioxidant: synthesis and biomedical applications. Jom. 2008;60(3):33–7.

    Article  Google Scholar 

  10. Deliormanlı AM. Synthesis and characterization of cerium-and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2015;26(2):1–3.

    Google Scholar 

  11. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3(4):1411–20.

    Article  Google Scholar 

  12. Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F, Rosal R, et al. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep. 2015;5:15613.

    Article  Google Scholar 

  13. Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, et al. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem. 2010;20(40):8912–9.

    Article  Google Scholar 

  14. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767–75.

    Article  Google Scholar 

  15. Zhang WJ, Wang GC, Liu Y, Zhao XB, Zou DH, Zhu C, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials. 2013;34(13):3184–95.

    Article  Google Scholar 

  16. Niu YR, Wang HY, Huang LP, Li H, Liu XY, Zheng XB, et al. Oxidation and ablation resistance of low pressure plasma-sprayed ZrB2-Si composite coating. J Therm Spray Technol. 2014;23(3):470–6.

    Article  Google Scholar 

  17. Yang K, Zhou XM, Liu CG, Tao SY, Ding CX. Sliding wear performance of plasma-sprayed Al2O3-Cr2O3 composite coatings against graphite under severe conditions. J Therm Spray Technol. 2013;22(7):1154–62.

    Article  Google Scholar 

  18. Wang GC, Lu ZF, Liu XY, Zhou XM, Ding CX, Zreiqat H. Nanostructured glass-ceramic coatings for orthopaedic applications. J R Soc Interface. 2011;8(61):1192–203.

    Article  Google Scholar 

  19. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32(13):3395–403.

    Article  Google Scholar 

  20. Li YF, Fu Q, Qi YP, Shen MM, Niu Q, Hu KJ, et al. Effect of a hierarchical hybrid micro/nanorough strontium-loaded surface on osseointegration in osteoporosis. Rsc Adv. 2015;5(65):52296–306.

    Article  Google Scholar 

  21. Li K, Yu JM, Xie YT, Huang LP, Ye XJ, Zheng XB. Chemical stability and antimicrobial activity of plasma sprayed bioactive Ca2ZnSi2O7 coating. J Mater Sci Mater Med. 2011;22(12):2781–9.

    Article  Google Scholar 

  22. Huang YL, Lee CH, Liao JF, Liu YW, Chiou WF. Protective effects of ugonin K on hydrogen peroxide-induced osteoblast cell damage. J Funct Foods. 2015;15:487–96.

    Article  Google Scholar 

  23. Li K, Yu JM, Xie YT, Huang LP, Ye XJ, Zheng XB. Effects of Zn content on crystal structure, cytocompatibility, antibacterial activity, and chemical stability in Zn-modified calcium silicate coatings. J Therm Spray Technol. 2013;22(6):965–73.

    Article  Google Scholar 

  24. Zheng XB, Huang MH, Ding CX. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21(8):841–9.

    Article  Google Scholar 

  25. Zhao XB, Liu GP, Zheng H, Cao HL, Liu XY. Dose-dependent effects of CeO2 on microstructure and antibacterial property of plasma-sprayed TiO2 coatings for orthopedic application. J Therm Spray Technol. 2015;24(3):401–9.

    Article  Google Scholar 

  26. Wang YJ, Dong H, Lyu GM, Zhang HY, Ke J, Kang LQ, et al. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance. Nanoscale. 2015;7(33):13981–90.

    Article  Google Scholar 

  27. Zhang JH, Zhu YF. Synthesis and characterization of CeO2-incorporated mesoporous calcium-silicate materials. Microporous Mesopoousr Mater. 2014;197:244–51.

    Article  Google Scholar 

  28. Leonelli C, Lusvardi G, Malavasi G, Menabue L, Tonelli M. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Non Cryst Solids. 2003;316(2–3):198–216.

    Article  Google Scholar 

  29. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

    Article  Google Scholar 

  30. Gardner AM, Xu FH, Fady C, Jacoby FJ, Duffey DC, Tu YP, et al. Apoptotic vs nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radical Bio Med. 1997;22(1–2):73–83.

    Article  Google Scholar 

  31. Palomba L, Sestili P, Columbaro M, Falcieri E, Cantoni O. Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide. Biochem Pharmacol. 1999;58(11):1743–50.

    Article  Google Scholar 

  32. Hosoya S, Suzuki H, Yamamoto M, Kobayashi K, Abiko Y. Alkaline phosphatase and type I collagen gene expressions were reduced by hydroxyl radical-treated fibronectin substratum. Mol Genet Metab. 1998;65(1):31–4.

    Article  Google Scholar 

  33. Naganuma T, Traversa E. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. Nanoscale. 2012;4(16):4950–3.

    Article  Google Scholar 

  34. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano. 2011;5(6):4537–49.

    Article  Google Scholar 

  35. Xiao Y, Li X, Cui YQ, Zhang J, Liu LJ, Xie XY, et al. Hydrogen peroxide inhibits the proliferation and endothelial differentiation of bone marrow stem cells partially through reactive oxygen species generation. Life Sci. 2014;112(1–2):33–40.

    Article  Google Scholar 

  36. Ando T, Mimura K, Johansson CC, Hanson MG, Mougiakakos D, Larsson C, et al. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. J Immunol. 2008;181(12):8382–90.

    Article  Google Scholar 

  37. Halliwell B. Role of free radicals in the neurodegenerative diseases—therapeutic implications for antioxidant treatment. Drug Aging. 2001;18(9):685–716.

    Article  Google Scholar 

  38. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29(18):2705–9.

    Article  Google Scholar 

  39. Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B. 2015;3(24):4843–52.

    Article  Google Scholar 

  40. Zhao LZ, Wang HR, Huo KF, Zhang XM, Wang W, Zhang YM, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19–29.

    Article  Google Scholar 

  41. Naganuma T, Traversa E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials. 2014;35(15):4441–53.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51502328, 81301537, 81300917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebin Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xie, Y., You, M. et al. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability. J Mater Sci: Mater Med 27, 100 (2016). https://doi.org/10.1007/s10856-016-5710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5710-9

Keywords

Navigation