Skip to main content
Log in

Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurobe H, Maxfield MW, Breuer CK, Shinoka T. Concise review: tissue engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Trans Med. 2012;1:566–71.

    Article  Google Scholar 

  2. Goh ET, Wong E, Farhatnia Y, Tan A, Seifalian AM. Accelerating in situ endothelialisation of cardiovascular bypass grafts. Int J Mol Sci. 2015;16:597–627.

    Article  Google Scholar 

  3. Melchiorri AJ, Hibino N, Fisher JP. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng Part B. 2013;19:292–307.

    Article  Google Scholar 

  4. Shin YM, Lee YB, Kim SJ, Kang JK, Park JC, Jang W, Shin H. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules. 2012;13:2020–8.

    Article  Google Scholar 

  5. Zheng WT, Wang ZH, Song LJ, Zhao Q, Zhang J, Li D, Wang SF, Han JH, Zheng XL, Yang ZM, Kong DL. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials. 2012;33:2880–91.

    Article  Google Scholar 

  6. Oh JH, Lee JS, Park KM, Moon HT, Park KD. Tyrosinase-mediated surface grafting of cell adhesion peptide onto micro-fibrous polyurethane for improved endothelialization. Macromol Res. 2012;20:1150–65.

    Article  Google Scholar 

  7. Du FY, Wang H, Zhao W, Li D, Kong DL, Yang J, Zhang YY. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials. 2012;33:762–70.

    Article  Google Scholar 

  8. Wang ZX, Sun B, Zhang M, Ou LL, Che YZ, Zhang J, Kong DL. Functionalization of electrospun poly(ε-caprolactone) scaffold with heparin and vascular endothelial growth factors for potential application as vascular grafts. J Bioact Compat Polym. 2013;28:154–66.

    Article  Google Scholar 

  9. Tian L, Prabhakaran MP, Ding X, Kai D, Ramakrishna S. Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering. J Mater Sci. 2012;47:3272–81.

    Article  Google Scholar 

  10. He SH, Xia T, Wang H, Wei L, Luo XM, Li XH. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater. 2012;8:2659–69.

    Article  Google Scholar 

  11. Hu J, Wei JC, Liu WY, Chen YW. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a drug delivery system by emulsion electrospinning. J Biomater Sci Polym Ed. 2013;24:972–85.

    Article  Google Scholar 

  12. Li XQ, Su Y, Liu SP, Tan LJ, Mo XM, Ramakrishna S. Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surf B. 2010;75:418–24.

    Article  Google Scholar 

  13. Han FX, Zhang H, Zhao J, Zhao YH, Yuan XY. Diverse release behaviors of water-soluble bioactive substances from fibrous membranes prepared by emulsion and suspension electrospinning. J Biomater Sci Polym Ed. 2013;24:1244–59.

    Article  Google Scholar 

  14. Han FX, Zhang H, Zhao J, Zhao Y, Yuan XY. In situ encapsulation of hydrogel in ultrafine fibers by suspension electrospinning. Polym Eng Sci. 2012;52:2695–704.

    Article  Google Scholar 

  15. McKenna KA, Hinds MT, Sarao RC, Wu PC, Maslen CL, Glanville RW, Babcock D, Gregory KW. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater. 2012;8:225–33.

    Article  Google Scholar 

  16. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 2008;29:2891–8.

    Article  Google Scholar 

  17. Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30:583–8.

    Article  Google Scholar 

  18. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res A. 2007;83:999–1008.

    Article  Google Scholar 

  19. McClure MJ, Simpson DG, Bowlin GL. Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: optimization of graft properties. J Mech Behav Biomed Mater. 2012;10:48–61.

    Article  Google Scholar 

  20. Zhang H, Jia XL, Han FX, Zhao J, Zhao YH, Fan YB, Yuan XY. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34:2202–12.

    Article  Google Scholar 

  21. Han FX, Jia XL, Dai DD, Yang XL, Zhao J, Zhao YH, Fan XB, Yuan XY. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Biomaterials. 2013;34:7302–13.

    Article  Google Scholar 

  22. Yao Y, Wang JN, Cui Y, Xu R, Wang ZH, Zhang J, Wang K, Li YJ, Zhao Q, Kong DL. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 2014;10:2739–49.

    Article  Google Scholar 

  23. Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, Khan MI, Shabana S, Mousa SA, Mukhtar H. Excellent anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo. Nanomed Nanotechnol. 2014;10:1619–26.

    Article  Google Scholar 

  24. Gui R, Wang Y, Sun J. Encapsulating magnetic and fluorescent mesoporous silica into thermosensitive chitosan microspheres for cell imaging and controlled drug release in vitro. Colloids Surf B. 2014;113:1–9.

    Article  Google Scholar 

  25. Teng DY, Wu ZM, Zhang XG, Wang XY, Zheng C, Wang Z, Li CX. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer. 2010;51:639–46.

    Article  Google Scholar 

  26. Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP. Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis. 1999;3:147–58.

    Article  Google Scholar 

  27. Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, Stupp SI. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci USA. 2011;108:13438–43.

    Article  Google Scholar 

  28. Cai L, Dinha CB, Heilshorn SC. One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomater Sci. 2014;2:757–65.

    Article  Google Scholar 

  29. Leslie-Barbick JE, Saik JE, Gould DJ, Dickinson ME, West JL. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials. 2011;32:5782–9.

    Article  Google Scholar 

  30. Chan TR, Stahl PJ, Yu SM. Matrix-bound VEGF mimetic peptides: design and endothelial-cell activation in collagen scaffolds. Adv Funct Mater. 2011;21:4252–62.

    Article  Google Scholar 

  31. Santulli G, Ciccarelli M, Palumbo G, Campanile A, Galasso G, Ziaco B, Altobelli GG, Cimini V, Piscione F, D’Andrea LD, Pedone C, Trimarco B, Iaccarino G. In vivo properties of the proangiogenic peptide QK. J Transl Med. 2009;7:41.

    Article  Google Scholar 

  32. Finetti F, Basile A, Capasso D, Gaetano SD, Stasi RD, Pascale M, Turco CM, Ziche M, Morbidelli L, D’Andrea LD. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem Pharm. 2012;84:303–11.

    Article  Google Scholar 

  33. Kang HY, Fan YB, Sun AQ, Deng XY. Compositional or charge density modification of the endothelial glycocalyx accelerates flow-dependent concentration polarization of low-density lipoproteins. Exp Biol Med. 2011;236:800–7.

    Article  Google Scholar 

  34. D’Andrea LD, Iaccarino G, Fattorusso R, Sorriento D, Carannante C, Capasso D, Trimarco B, Pedone C. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc Natl Acad Sci USA. 2005;102:14215–20.

    Article  Google Scholar 

  35. Mulyasasmita W, Cai L, Hori Y, Heilshorn SC. Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels. Tissue Eng Part A. 2014;20:2102–14.

    Article  Google Scholar 

  36. Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10:1160–8.

    Article  Google Scholar 

  37. Duan B, Dong CH, Yuan XY, Yao KD. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed. 2004;15:797–811.

    Article  Google Scholar 

  38. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release. 2002;81:57–64.

    Article  Google Scholar 

  39. Han FX, Yang XL, Zhao J, Zhao YH, Yuan XY. Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med. 2015;26:160.

    Article  Google Scholar 

  40. Lu L, Payvandi F, Wu L, Zhang LH, Hariri RJ, Man HW, Chen RS, Muller GW, Hughes CCW, Stirling DI, Schafer PH, Bartlett JB. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77:78–86.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China via Grant Nos. 51473118 and 11372030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Jia or Xiaoyan Yuan.

Additional information

Yang Yang and Qingmao Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, Q., Zhou, F. et al. Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth. J Mater Sci: Mater Med 27, 106 (2016). https://doi.org/10.1007/s10856-016-5705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5705-6

Keywords

Navigation