Skip to main content
Log in

Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Mg2+, Zn2+ and Sr2+ substitution for Ca2+ in plasma sprayed calcium silicate (Ca–Si) coatings have been reported to impede their degradation in physiological environment and, more importantly, to improve their biological performance. The reason for the improved biological performance is still elusive and, especially, the contribution of the dopant ions is lack of obvious and direct evidence. In this study, we aim to identify the effect of Mg2+, Zn2+ and Sr2+ incorporation on the osteogenic ability of Ca–Si based coatings (Ca2MgSi2O7, Ca2ZnSi2O7 and Sr-CaSiO3) by minimizing the influence of Ca and Si ions release and surface physical properties. Similar surface morphology, crystallinity and roughness were achieved for all samples by optimizing the spray parameters. As expected, Ca and Si ions release from all the coatings showed the comparable concentration with immersing time. The response of MC3T3-E1 cells onto Mg2+, Zn2+ and Sr2+ doped Ca–Si coatings were studied in terms of osteoblastic adhesion, proliferation, differentiation and mineralization. The results showed that the level of cell adhesion and proliferation increased the most on the surface of Mg-modified coating. Gene expressions of early markers of osteoblast differentiation (COL-I and ALP mRNA) were obviously improved on Zn-modified coating. Gene expressions of later markers for osteoblast differentiation (OPN and OC mRNA) and mineralized nodules formation were obviously accelerated on the surface of Sr-modified coating. Since Mg2+, Zn2+ and Sr2+ play a regulatory role in different stages of osteogenesis, it may be possible to utilize this in the development of new coating materials for orthopedic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ni S, Chang J, Chou L, Zhai W. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res B Appl Biomater. 2007;80(1):174–83. doi:10.1002/jbm.b.30582.

    Article  Google Scholar 

  2. Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588–96. doi:10.1016/j.biomaterials.2008.03.013.

    Article  Google Scholar 

  3. Liu X, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother. 2008;62(8):526–9. doi:10.1016/j.biopha.2008.07.051.

    Article  Google Scholar 

  4. Mohammadi H, Hafezi M, Nezafati N, Heasarki S, Nadernezhad A, Ghazanfari SMH, et al. Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. J Ceram Sci Technol. 2014;5(1):1–12.

    Google Scholar 

  5. Zhang NL, Molenda JA, Mankoci S, Zhou XF, Murphy WL, Sahai N. Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces. Biomater Sci. 2013;1(10):1101–10. doi:10.1039/C3bm60034c.

    Article  Google Scholar 

  6. Wu CT, Chang J. A novel akermanite bioceramic: preparation and characteristics. J Biomater Appl. 2006;21(2):119–29. doi:10.1177/0885328206057953.

    Article  Google Scholar 

  7. Wu CT, Chang J, Zhai WY. A novel hardystonite bioceramic: preparation and characteristics. Ceram Int. 2005;31(1):27–31. doi:10.1016/j.ceramint.2004.02.008.

    Article  Google Scholar 

  8. Wu CT, Ramaswamy Y, Kwik D, Zreiqat H. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials. 2007;28(21):3171–81.

    Article  Google Scholar 

  9. Liang Y, Xie Y, Ji H, Huang L, Zheng X. Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti–6Al–4V. Appl Surf Sci. 2010;256(14):4677–81. doi:10.1016/j.apsusc.2010.02.071.

    Article  Google Scholar 

  10. Wu CT, Ramaswamy Y, Soeparto A, Zreiqat H. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J Biomed Mater Res Part A. 2008;86A(2):402–10. doi:10.1002/jbm.a.31623.

    Article  Google Scholar 

  11. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003;72(1):32–41.

    Article  Google Scholar 

  12. Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 1998;11(2–3):119–35.

    Article  Google Scholar 

  13. Pors Nielsen S. The biological role of strontium. Bone. 2004;35(3):583–8. doi:10.1016/j.bone.2004.04.026.

    Article  Google Scholar 

  14. Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev. 2013;65(4):405–20. doi:10.1016/j.addr.2012.05.015.

    Article  Google Scholar 

  15. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35. doi:10.1016/s8756-3282(02)00950-x.

    Article  Google Scholar 

  16. Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater. 2011;7(6):2604–14. doi:10.1016/j.actbio.2011.02.023.

    Article  Google Scholar 

  17. Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, et al. Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 2013;9(8):8004–14. doi:10.1016/j.actbio.2013.04.024.

    Article  Google Scholar 

  18. Xue W, Liu X, Zheng X, Ding C. Dissolution and mineralization of plasma-sprayed wollastonite coatings with different crystallinity. Surf Coat Technol. 2005;200(7):2420–7. doi:10.1016/j.surfcoat.2004.07.114.

    Article  Google Scholar 

  19. Lazaro GS, Santos SC, Resende CX, dos Santos EA. Individual and combined effects of the elements Zn, Mg and Sr on the surface reactivity of a SiO2 center dot CaO center dot Na2O center dot P2O5 bioglass system. J Non-Cryst Solids. 2014;386:19–28. doi:10.1016/j.jnoncrysol.2013.11.038.

    Article  Google Scholar 

  20. Kieswetter KS. Z; Dean, DD; Boyan, BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7(4):329–45.

    Article  Google Scholar 

  21. Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32(11):2757–74. doi:10.1016/j.biomaterials.2011.01.004.

    Article  Google Scholar 

  22. Rezania A, Healy KE. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. J Orthopaed Res. 1999;17(4):615–23.

    Article  Google Scholar 

  23. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62(2):175–84.

    Article  Google Scholar 

  24. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, et al. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact. 2007;167(3):207–18. doi:10.1016/j.cbi.2007.03.002.

    Article  Google Scholar 

  25. Li K, Yu J, Xie Y, Huang L, Ye X, Zheng X. Effects of Zn content on crystal structure, cytocompatibility, antibacterial activity, and chemical stability in zn-modified calcium silicate coatings. J Therm Spray Technol. 2013;22(6):965–73. doi:10.1007/s11666-013-9938-3.

    Article  Google Scholar 

  26. Hall SL, Dimai HP, Farley JR. Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int. 1999;64(2):163–72. doi:10.1007/s002239900597.

    Article  Google Scholar 

  27. Yamaguchi M, Goto M, Uchiyama S, Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 2008;312(1–2):157–66. doi:10.1007/s11010-008-9731-7.

    Article  Google Scholar 

  28. Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract. 2010;4(5):356–61. doi:10.4162/nrp.2010.4.5.356.

    Article  Google Scholar 

  29. Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–64. doi:10.1016/j.biomaterials.2015.02.097.

    Article  Google Scholar 

  30. Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther. 2012;136(2):216–26. doi:10.1016/j.pharmthera.2012.07.009.

    Article  Google Scholar 

  31. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res Part A. 2006;79(4):804–14. doi:10.1002/jbm.a.30815.

    Article  Google Scholar 

  32. Barbara A, Delannoy P, Denis BG, Marie PJ. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism. 2004;53(4):532–7. doi:10.1016/j.metabol.2003.10.022.

    Article  Google Scholar 

  33. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, et al. Incorporation and distribution of strontium in bone. Bone. 2001;28(4):446–53. doi:10.1016/S8756-3282(01)00419-7.

    Article  Google Scholar 

  34. Wu LNY, Genge BR, Wuthier RE. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. J Inorg Biochem. 2009;103(7):948–62. doi:10.1016/j.jinorgbio.2009.04.004.

    Article  Google Scholar 

  35. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem. 1995;58(1):49–58. doi:10.1016/0162-0134(94)00036-A.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant No. 51172264, No. 51502328) and the Opening Project of the Shanghai Key Laboratory of Orthopedic Implant (Grant No. KFKT2014002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Li or Xuebin Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Li, K., Xie, Y. et al. Different response of osteoblastic cells to Mg2+, Zn2+ and Sr2+ doped calcium silicate coatings. J Mater Sci: Mater Med 27, 56 (2016). https://doi.org/10.1007/s10856-016-5672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5672-y

Keywords

Navigation