Skip to main content
Log in

Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burr J, Azuara-Blanco A, Avenell A. Medical versus surgical interventions for open angle glaucoma. Cochrane Database Syst Rev. 2012;9:CD004399.

    Google Scholar 

  2. Hitchings R. Initial treatment for open-angle glaucoma-medical, laser, or surgical? Surgery is the treatment of choice for open-angle glaucoma. Arch Ophthalmol. 1998;116(2):241–2.

    Google Scholar 

  3. Chen CW, Huang HT, Bair JS, Lee CC. Trabeculectomy with simultaneous topical application of mitomycin-C in refractory glaucoma. J Ocul Pharmacol. 1990;6(3):175–82.

    Article  Google Scholar 

  4. Greenfield DS, Liebmann JM, Jee J, Ritch R. Lateonset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol. 1998;116(4):443–7.

    Article  Google Scholar 

  5. Kitazawa Y, Taniguchi T, Nakano Y, Shirato S, Yamamoto T. 5-Fluorouracil for trabeculectomy in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1987;225(6):403–5.

    Article  Google Scholar 

  6. Paula JS, Ribeiro VR, Chahud F, Cannellini R, Monteiro TC, Gomes EC, Reinach PS, Rodrigues Mde L, Silva-Cunha A. Bevacizumab-loaded polyurethane subconjunctival implants: effects on experimental glaucoma filtration surgery. J Ocul Pharmacol Ther. 2013;29(6):566–73.

    Article  Google Scholar 

  7. Grewal DS, Jain R, Kumar H, Grewal SPS. Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy a pilot study. Ophthalmology. 2008;115(12):2141–5.

    Article  Google Scholar 

  8. Li Z, Van Bergen T, Van de Veire S, Van de Vel I, Moreau H, Dewerchin M. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50(11):5217–25.

    Article  Google Scholar 

  9. Vandewalle E, Abegão Pinto L, Van Bergen T, Spielberg L, Fieuws S, Moons L, Spileers W, Zeyen T, Stalmans I. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol. 2014;98(1):73–8.

    Article  Google Scholar 

  10. Nomoto H, Shiraga F, Kuno N, Kimura E, Fujii S, Shinomiya K, Nugent AK, Hirooka K, Baba T. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest. Ophthalmol Vis Sci. 2009;50(10):4807–13.

    Article  Google Scholar 

  11. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y, Qian Z. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2009;365:89–99.

    Article  Google Scholar 

  12. Yang B, Gong C, Zhao X, Zhou S, Li Z, Qi X, Zhong Q, Luo F, Qian Z. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomed. 2012;7:547–57.

    Google Scholar 

  13. Luo Z, Jin L, Xu L, Zhang ZL, Yu J, Shi S, Li X, Chen H. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv. 2014. doi:10.3109/10717544.2014.903535.

    Google Scholar 

  14. Yin H, Gong C, Qian Z, Liu X, Wei Y, Qian Z. Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-peg hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res B Appl Biomater. 2010;92(1):129–37.

    Article  Google Scholar 

  15. Peng R, Qin G, Li X, Lv H, Qian Z, Yu L. The PEG-PCL-PEG hydrogel as an Implanted ophthalmic delivery system after glaucoma filtration surgery; a Pilot Study. Med Hypothesis Discov Innov Ophthalmol. 2014;3(1):3–8.

    Google Scholar 

  16. Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyerster A-blocks and bydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev. 2002;54:99–134.

    Article  Google Scholar 

  17. Rodríguez-Agirretxe I, Vega SC, Rezola R, Vecino E, Mendicute J, Suarez-Cortes T, Acera A. The PLGA implant as an antimitotic delivery system after experimental trabeculectomy. Invest Ophthalmol Vis Sci. 2013;54(8):5227–35.

    Article  Google Scholar 

  18. Okuda T, Higashide T, Fukuhira Y, Sumi Y, Shimomura M, Sugiyama K. A thin honeycomb-patterned film as an adhesion barrier in an animal model of glaucoma filtration surgery. J Glaucoma. 2009;18:220–6.

    Article  Google Scholar 

  19. Einmahl S, Behar-Cohen F, D’Hermies F, Rudaz S, Tabatabay C, Renard G. GurnyR. A new poly(ortho ester)-based drug delivery system as an adjunct treatment in filtering surgery. Invest Ophthalmol Vis Sci. 2001;42(3):695–700.

    Google Scholar 

  20. Cagiannos C, Abul-Khoudoud OR, DeRijk W, Shell DH 4th, Jennings LK, Tolley EA, Handorf CR, Fabian TC. Rapamycin-coated expanded polytetrafluoroethylene bypass grafts exhibit decreased anastomotic neointimal hyperplasia in a porcine model. J Vasc Surg. 2005;42:980–8.

    Article  Google Scholar 

  21. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circluation. 1995;92(9 suppl):II365-71.

    Google Scholar 

  22. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80.

    Article  Google Scholar 

  23. Pollina EA, Legesse-Miller A, Haley EM, Goodpaster T, Randolph-Habecker J, Coller HA. Regulating the angiogenic balance in tissues. Cell Cycle. 2008;7(13):2056–70.

    Article  Google Scholar 

  24. Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest. 2008;88(6):579–90.

    Article  Google Scholar 

  25. Park HYL, Kim JH, Park CK. VEGF induces TGF-β1 expression and myofibroblast transformation after glaucoma surgery. Am J Pathol. 2013;182(6):2147–54.

    Article  Google Scholar 

  26. Zhou M, Wan W, Huang W, Cheng B, Ding X, Zhang X. Levels of erythropoietin and vascular endothelial growth factor in surgery-required advanced neovascular glaucoma eyes before and after intravitreal injection of bevacizumab. Invest Ophthalmol Vis Sci. 2013;54(6):3874–9.

    Article  Google Scholar 

  27. Kahook MY, Schuman JS, Noecker RJ. Intravitreal bevacizumab in a patient with neovascular glaucoma. Ophthalmic Surg Lasers Imaging. 2006;37(2):144–6.

    Google Scholar 

  28. Rangelov S, Dimitrov P, Tsvetanov CB. Mixed block copolymer aggregates with tunable temperature behavior. J Phys Chem B. 2005;109(3):1162–7.

    Article  Google Scholar 

  29. Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyerster A-blocks and bydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv Drug Deliv Rev. 2002;54(1):99–134.

    Article  Google Scholar 

  30. Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B. Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules. 2005;6(2):885–90.

    Article  Google Scholar 

  31. Lei N, Gong C, Qian Z, Luo F, Wang C, Wang H, Wei Y. Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale. 2012;4(18):5686–93.

    Article  Google Scholar 

  32. Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, Li X, Luo F, Yang Z, Wei Y. Injectable thermosensitive PEG-PCL-PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials. 2014;35(1):236–48.

    Article  Google Scholar 

  33. Gong CY, Liu CB, Qian ZY, Liu CB, Huang MJ, Gu YC, Wen YJ, Kan B, Wang K, Dai M, Li XY, Gou ML, Tu MJ, Wei YC. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)–polycaprolactone–poly(ethylene glycol) block copolymers. Smart Mater Struct. 2007;16:927–33.

    Article  Google Scholar 

  34. Liu W, Griffith M, Li F. Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med. 2008;19(11):3365–71.

    Article  Google Scholar 

  35. Palma SD, Tartara LI, Quinteros D, Allemandi DA, Longhi MR, Granero GE. An efficient ternary complex of acetazolamide with HP-ss-CD and TEA for topical ocular administration. J Control Release. 2009;138(1):24–31.

    Article  Google Scholar 

  36. Karlgard CC, Wong NS, Jones LW, Moresoli C. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and pHEMA hydrogel contact lens materials. Int J Pharm. 2003;257(1–2):141–51.

    Article  Google Scholar 

  37. Nagarwal RC, Kumar R, Dhanawat M, Pandit JK. Modified PLA nano in situ gel: a potential ophthalmic drug delivery system. Colloids Surf B Biointerfaces. 2011;86(1):28–34.

    Article  Google Scholar 

  38. Marrink SJ, Mark AE. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc. 2003;125(37):11144–5.

    Article  Google Scholar 

  39. Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci U S A. 2006;103(43):15841–6.

    Article  Google Scholar 

  40. Kitnarong N, Chindasub P, Metheetrairut A. Surgical outcome of intravitreal bevacizumab and filtration surgery in neovascular glaucoma. Adv Ther. 2008;25(5):438–43.

    Article  Google Scholar 

  41. Baldassare RD, Brunette I, Desjardins DC, Amyot M. Corneal ectasia secondary to excessive ocular massage following trabeculectomy with 5-fluorouracil. Can J Ophthalmol. 1996;31:252–4.

    Google Scholar 

  42. How A, Chua JL, Charlton A, Su R, Lim M, Kumar RS, Crowston JG, Wong TT. Combined treatment with bevacizumab and 5-fluorouracil attenuates the postoperative scarring response after experimental glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2010;51(2):928–32.

    Article  Google Scholar 

  43. Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009;29:699–703.

    Article  Google Scholar 

  44. Andrew JS, Anglin EJ, Wu EC, Chen MY, Cheng L, Freeman WR, Sailor MJ. Sustained release of a monoclonal antibody from electrochemically prepared mesoporous silicon oxide. Adv Funct Mater. 2010;20:4168–74.

    Article  Google Scholar 

  45. Van Bergen T, Vandewalle E, Van de Veire S, Dewerchin M, Stassen JM, Moons L, Stalmans I. The role of different VEGF isoforms in scar formation after glaucoma filtration surgery. Exp Eye Res. 2011;93:689–99.

    Article  Google Scholar 

  46. Memarzadeh F, Varma R, Lin LT, Parikh JG, Dustin L, Alcaraz A, Eliott D. Postoperative use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 2009;50(7):3233–7.

    Article  Google Scholar 

  47. Huang W, Chen S, Gao X, Yang M, Zhang J, Li X, Wang W, Zhou M, Zhang X, Zhang X. Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci. 2014;55(2):1088–94.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 30901658) and International Science & Technology Cooperation Program of China (No. 2013DFG52300). Dr. Ling Yu and Dr. Zhiyong Qian contributed equally and are regarded as Co-Correspondence authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Qian or Ling Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Wang, Y., Li, X. et al. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery. J Mater Sci: Mater Med 26, 225 (2015). https://doi.org/10.1007/s10856-015-5556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5556-6

Keywords

Navigation