Skip to main content
Log in

Collagen gel formation in the presence of a carbon nanobrush

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Type I, bovine skin collagen was allowed to gel in the presence of various concentrations of a carbon nanotube material covered with a polystyrene/polyaniline copolymer, called a carbon nanobrush (CNB). The rate of collagen gelation was enhanced by the presence of the CNB in a dose dependent manner. The extent of collagen gelation was due to the concentration of collagen and not the amount of CNB. Collagen D-periodicity, and average fibril diameter were unchanged by the CNB material as seen in transmission electron micrographs. Gel tensile strength was reduced by the presence of the CNB in a dose related manner. The collagen-CNB mixture may have a role in the repair and reconstruction of wounds or degenerated connective tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sterodimas A, De Faria J, Correa WE, Pitanguy I. Tissue engineering in plastic surgery, an up-to-date review of the current literature. Ann Plast Surg. 2009;62:97–103.

    Article  Google Scholar 

  2. Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, et al. Collagen—emerging collagen based therapies hit the patient. Adv Drug Deliv. 2013;65:429–56.

    Article  Google Scholar 

  3. Charulatha V, Rajaram A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 2003;24:759–67.

    Article  Google Scholar 

  4. Rich H, Odlyha M, Cheema U, Mudera V, Bozec L. Effect of photochemical riboflavin- mediated crosslinks on the physical properties of collagen constructs and fibrils. J Mater Sci. 2013;. doi:10.1007/s1-956-013-5038-7.

    Google Scholar 

  5. Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991;354:56–8.

    Article  Google Scholar 

  6. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–53.

    Article  Google Scholar 

  7. Girton TS, Oegema RR, Tranquillo RT. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J Biomed Mater Res. 1997;46:87–92.

    Article  Google Scholar 

  8. He H, Matsuda T. Arterial replacement with compliant hierarchic hybrid bascular graft: biomechanical adaptation and failure. Tissue Eng. 2002;8:213–24.

    Article  Google Scholar 

  9. Bozec L, van der Heijden G, Horton M. Collagen fibrils: nanoscale ropes. Biophys J. 2007;92:70–5.

    Article  Google Scholar 

  10. Wood GC. The formation of fibrils from collagen solutions, #3 effect of chondroitin sulphate and some other naturally occurring polyanions on the rate of formation. Biochem J. 1960;75:606–12.

    Google Scholar 

  11. Williams BR, Gelman RA, Poppke DC, Piez KA. Collagen fibril formation—optimal in vitro conditions and preliminary kinetic results. J Biol Chem. 1978;253:6578–85.

    Google Scholar 

  12. Dombi GW, Halsall HB. Collagen fibril formation in the presence of sodium dodecyl sulphate. Biochem J. 1985;228:551–6.

    Article  Google Scholar 

  13. MacDonald RA, Laurenzi BF, Viswanatha G, Ajayan PM, Stegemann JP. Collagen—carbon nanotube composite materials as scaffold in tissue engineering. J Biomed Mater Res. 2005;74:489–96.

    Article  Google Scholar 

  14. Bhattacharyya S, Salvetat JP, Saboungi ML. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl Phys Lett. 2006;88:233119.

    Article  Google Scholar 

  15. Zanello LP, Shao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006;5:562–7.

    Article  Google Scholar 

  16. Sridharan I, Kim T, Wang R. Adapting collagen/CNT matrix in directing hESC differentiation. Biochem Biophys Res Com. 2009;381:508–12.

    Article  Google Scholar 

  17. Tan W, Twomey J, Guo D, Madhavan K, Li M. Evaluation of nanostructural, mechanical and biological properties of collagen-nanotube composites. IEEE Trans Nanobioscience. 2010;9:111–20.

    Article  Google Scholar 

  18. Highberger JH, Gross J, Schmitt FO. The interaction of mucoprotein with soluble collagen; an electron microscope study. Proc Nat Acad Sci. 1951;37:286–91.

    Article  Google Scholar 

  19. Purohit K,Mirville M, Yang SC, Shukla A, Chalivendra VB, Conductive nano-brush synthesized by physical grafting of conducting polymers on carbon nanotube. In: Hierarchical materials and composites; 2011 (Materials research society symposium proceedings vol. 1304) .

  20. Gross J, Highberger JH, Schmitt FO. Extraction of collagen from connective tissue by neutral salt solutions. Proc Nat Acad Sci. 1955;41:1–7.

    Article  Google Scholar 

  21. Chandrakasan G, Torchia DA, Piez KA. Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J Biol Chem. 1976;251:6062–7.

    Google Scholar 

  22. Gelman RA, Williams BR, Piez KA. Structure and assembly of the native collagen fibril. J Biol Chem. 1979;254:180–6.

    Google Scholar 

  23. Snowden JM, Swann DA. The formation and thermal stability of in vitro assembled fibrils from acid-soluble and pepsin-treated collagens. Biochem et Biophys Acta. 1979;580:372–81.

    Google Scholar 

  24. Capaldi MJ, Chapman JA. The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro. Biopolymers. 1982;21:2291–313.

    Article  Google Scholar 

  25. Miyahara M, Hayashi K, Berger J, Tanzawa K, Njieha FK, Trelstad RL, Prockop DJ. Formation of collagen fibrils by enzymic cleavage of precursors of type I collagen in vitro. J Biol Chem. 1984;259:9891–8.

    Google Scholar 

  26. Wood GC, Keech MK. Formation of fibrils from collagen solutions, #1 the effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960;75:588–98.

    Article  Google Scholar 

  27. Cooper A. Thermodynamic studies of the assembly in vitro of native collagen fibrils. Biochem J. 1970;118:355–65.

    Article  Google Scholar 

  28. Linse S, Cabaleiro-Lago C, Xue W, Lynch I, Lindman S, Thulin E, Raford SE, Dawson KA. Nucleation of protein fibrillation by nanoparticles. Proc National Acad Sci. 2007;104:8691–6.

    Article  Google Scholar 

  29. Dombi GW, Halsall HB. Collagen fibril formation in the presence of dexamethasone disodium phosphate. Connect Tissue Res. 1986;15:257–68.

    Article  Google Scholar 

  30. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci. 2003;100:4984–9.

    Article  Google Scholar 

  31. Cao Y, Shou YM, Shan Y, Ju HX, Xue XJ. Preparation and characterization of grafted collagen-multiwalled carbon nanotube compostites. J Nanosci Nanotechnol. 2007;7:1–5.

    Google Scholar 

  32. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastics elastomers. Nat Mater. 2004;3:115–20.

    Article  Google Scholar 

  33. Thostenson ET, Chou TW. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys. 2007;35:L77–80.

    Article  Google Scholar 

  34. Colbert D. Singlewall nanotubes: a new option for conductive plastics and engineering polymers. Plast Addit Compd. 2003;5:12.

    Google Scholar 

  35. Chandran PL, Barocas VH. Microstructural mechanics of collagen gels in confined compression: poroelastcity, viscoelasticity and collapse. J Biomech Eng. 2004;126:152–66.

    Article  Google Scholar 

  36. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zetti A, Bertozzi CR. Interfacing carbon nanotubes with living cells. J Am Chem Soc. 2006;128:6292–3.

    Article  Google Scholar 

  37. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro. 2006;20:1202–12.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Richard White for his use of the Jasco TEM instrument and to thank Mr. David Bagley, of Advanced BioMatrix for his rheometric testing of the collagen gel samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Dombi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dombi, G.W., Purohit, K., Martin, L.M. et al. Collagen gel formation in the presence of a carbon nanobrush. J Mater Sci: Mater Med 26, 30 (2015). https://doi.org/10.1007/s10856-014-5356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5356-4

Keywords

Navigation