Skip to main content

Advertisement

Log in

Enhanced repair of a critical-sized segmental bone defect in rabbit femur by surface microstructured porous titanium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Repair of load-bearing bone defects remains a challenge in the field of orthopaedic surgery. In the current study, a surface microstructured porous titanium (STPT) successively treated with H2O2/TaCl5 solution and simulated body fluid was used to repair the critical-sized segmental bone defects in rabbit femur, and non-treated porous titanium (NTPT) and porous biphasic calcium phosphate ceramics (PBCP) were used as control, respectively. A 15 mm long implant was positioned in the femoral defect and stabilized by a plate and screws fixation. After implantation into the body for 1, 3 and 6 months, X-ray observation confirmed that porous titanium groups (NTPT and STPT) provided better mechanical support than PBCP group at the early stage. However, there was no obvious difference in the formed bony callus between PBCP and STPT groups in the later stage, and they both showed better shape of bony callus than NTPT group. Micro-CT and histomorphometric analysis for the samples of 6-month implantation demonstrated that more new bone formed in the inner pores of PBCP and STPT groups than that in NTPT group. Moreover, the biomechanical tests revealed that STPT group could bear larger compressive load than NTPT and PBCP groups, almost reaching the level of the normal rabbit femur. STPT exhibited the enhanced repairing effect on the critical-sized segmental bone defect in rabbit femur, meaning that it could be an ideal material for the repair of large bone defect in load-bearing site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schütz MA, Duda GN, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30:2149–63.

    Article  Google Scholar 

  2. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36:S20–7.

    Article  Google Scholar 

  3. Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42(Supplement 2):S56–63.

    Article  Google Scholar 

  4. Hench LL. Bioceramics: from Concept to Clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  Google Scholar 

  5. Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24:379–96.

    Article  Google Scholar 

  6. de Groot K. Clinical applications of calcium phosphate biomaterials: a review. Ceram Int. 1993;19:363–6.

    Article  Google Scholar 

  7. Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials. 1996;17:31–5.

    Article  Google Scholar 

  8. Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials. 1996;17:2131–7.

    Article  Google Scholar 

  9. Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, De Groot K. Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med. 1998;9:723–6.

    Article  Google Scholar 

  10. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci. 2010;107:13614–9.

    Article  Google Scholar 

  11. Komaki H, Tanaka T, Chazono M, Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials. 2006;27:5118–26.

    Article  Google Scholar 

  12. Liu G, Zhao L, Zhang W, Cui L, Liu W, Cao Y. Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. J Mater Sci Mater Med. 2008;19:2367–76.

    Article  Google Scholar 

  13. den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJTM. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-I or autologous bone marrow. J Orthop Res. 2003;21:521–8.

    Article  Google Scholar 

  14. Johnson KD, Frierson KE, Keller TS, Cook C, Scheinberg R, Zerwekh J, et al. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res. 1996;14:351–69.

    Article  Google Scholar 

  15. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  Google Scholar 

  16. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    Article  Google Scholar 

  17. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A. 1996;213:134–7.

    Article  Google Scholar 

  18. Thelen S, Barthelat F, Brinson LC. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res A. 2004;69A:601–10.

    Article  Google Scholar 

  19. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials. 2005;26:6014–23.

    Article  Google Scholar 

  20. Dunand DC. Processing of Titanium Foams. Adv Eng Mater. 2004;6:369–76.

    Article  Google Scholar 

  21. Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials. 2008;29:2608–15.

    Article  Google Scholar 

  22. Li H, Yu Q, Zhang B, Wang H, Fan H, Zhang X. Fabrication and Characterization of Bioactive Porous Titanium. Rare Metal Mater Eng. 2006;35:154–7.

    Google Scholar 

  23. Fujibayashi S, Neo M, Kim H-M, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004;25:443–50.

    Article  Google Scholar 

  24. Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, et al. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4 V. Biomaterials. 2005;26:23–36.

    Article  Google Scholar 

  25. Zhao C, Zhu X, Liang K, Ding J, Xiang Z, Fan H, et al. Osteoinduction of porous titanium: a comparative study between acid-alkali and chemical-thermal treatments. J Biomed Mater Res B Appl Biomater. 2010;95B:387–96.

    Article  Google Scholar 

  26. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, et al. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials. 2006;27:2682–91.

    Article  Google Scholar 

  27. Zhao CY, Liang KL, Tan J, Xiang Z, Fan HS, Zhang XD. Bioactivity of porous titanium with hydrogen peroxide solution with or without tantalum chloride treatment at a low temperature. Biomed Mater. 2013;8:025006.

    Article  Google Scholar 

  28. Yu S, Yu Z-t, Wang G, Han J-y, Ma X-q, Dargusch MS. Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans Nonferrous Met Soc. 2011;21:573–80.

    Article  Google Scholar 

  29. Fujibayashi S, Kim H-M, Neo M, Uchida M, Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials. 2003;24:3445–51.

    Article  Google Scholar 

  30. Yang J, Wang J, Yuan T, Zhu XD, Xiang Z, Fan YJ, et al. The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells. J Mater Sci Mater Med. 2013;24:2235–46.

    Article  Google Scholar 

  31. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  32. Wang YG, Pei GX. A defect model of femoral shaft as alone weight-bearing bone of rabbit used in construction of tissue engineered bone. Chin J Clin Rehabil. 2006;10:90–2.

    Google Scholar 

  33. Zhang YP, Cui JX, Pei GX, Wang YG, Guo F. Establishing of rabbit models of femoral defect. Chin J Clin Rehabil. 2006;10:87–9.

    Google Scholar 

  34. Yuan H, Van Blitterswijk CA, De Groot K, De Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 2006;12:1607–15.

    Article  Google Scholar 

  35. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res A. 2006;78A:139–47.

    Article  Google Scholar 

  36. Yuan H, van den Doel M, Li S, van Blitterswijk CA, de Groot K, de Bruijn JD. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med. 2002;13:1271–5.

    Article  Google Scholar 

  37. Bloemers FW, Blokhuis TJ, Patka P, Bakker FC, Wippermann BW, Haarman HJTM. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater. 2003;66B:526–31.

    Article  Google Scholar 

  38. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29:1177–88.

    Article  Google Scholar 

  39. Zhang C, Wang JX, Feng HZ, Lu B, Zhang XD. Repairing segmental bone defects with living porous ceramic cylinders: an experimental study in dog femora. J Biomed Mater Res. 2001;55:28–32.

    Article  Google Scholar 

  40. Murakami N, Saito N, Horiuchi H, Okada T, Nozaki K, Takaoka K. Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 (rhBMP-2) and a synthetic polymer. J Biomed Mater Res. 2002;62:169–74.

    Article  Google Scholar 

  41. Kaneko S, Tsuru K, Hayakawa S, Takemoto S, Ohtsuki C, Ozaki T, et al. In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials. 2001;22:875–81.

    Article  Google Scholar 

  42. Kim T, Suzuki M, Ohtsuki C, Masuda K, Tamai H, Watanabe E, et al. Enhancement of bone growth in titanium fiber mesh by surface modification with hydrogen peroxide solution containing tantalum chloride. J Biomed Mater Res B Appl Biomater. 2003;64B:19–26.

    Article  Google Scholar 

  43. Ohtsuki C, Iida H, Hayakawa S, Osaka A. Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res. 1997;35:39–47.

    Article  Google Scholar 

  44. Wang X–X, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res. 2000;52:171–6.

    Article  Google Scholar 

  45. Webster TJ. Nanophase ceramics: the future orthopedic and dental implant material. In: Ying JY, editor. Advances in Chemical Engineering. Waltham: Academic Press; 2001. p. 125–66.

    Google Scholar 

  46. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.

    Article  Google Scholar 

  47. Hamlet S, Ivanovski S. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification. Acta Biomater. 2011;7:2345–53.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support by the National Science Foundation of China (81190131, 31370984) and the National Key Technology Support Program of China (2012BAI18B04, 2012BAI17B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. D. Zhu or Z. Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Chen, H.J., Zhu, X.D. et al. Enhanced repair of a critical-sized segmental bone defect in rabbit femur by surface microstructured porous titanium. J Mater Sci: Mater Med 25, 1747–1756 (2014). https://doi.org/10.1007/s10856-014-5202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5202-8

Keywords

Navigation