Skip to main content
Log in

Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO (2013) Prevention of blindness and visual impairment. Priority eye diseases. http://www.who.int/blindness/causes/priority/en/index9.html.

  2. Wu J, Du Y, Mann MM, Yang E, Funderburgh JL, Wagner W, et al. Bioengineering organized, multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates. Tissue Eng A. 2013;19:2063–75.

    Article  Google Scholar 

  3. Myung D, Duhamel PE, Cochran JR, Noolandi J, Ta CN, Frank CW. Development of hydrogel-based keratoprostheses: a materials perspective. Biotechnol Prog. 2008;24:735–41.

    Article  Google Scholar 

  4. Polisetti N, Islam MM, Griffith M. The Artificial Cornea. Cornea Regen Med. 1014;2013:45–52.

    Google Scholar 

  5. Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res-Dordr. 2010;27:2043–53.

    Article  Google Scholar 

  6. Bakhshandeh H, Soleimani M, Hosseini SS, Hashemi H, Shabani I, Shafiee A, et al. Poly (e-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. Int J Nanomedicine. 2011;6:1509–15.

    Google Scholar 

  7. Ali M, Byrne ME. Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res-Dordr. 2009;26:714–26.

    Article  Google Scholar 

  8. Boushehri A, Tang D, Shieh KJ, Prausnitz J, Radke CJ. Water transport through soft contact lenses determined in a fan-evaporation cell. J Membr Sci. 2010;362:529–34.

    Article  Google Scholar 

  9. Bach JS, Detrez F, Cherkaoui M, Cantournet S, Ku DN, Corté L. Hydrogel fibers for ACL prosthesis: design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs. J Biomech. 2013;46:1463–70.

    Article  Google Scholar 

  10. Kobayashi M, Toguchida J, Oka M. Development of the shields for tendon injury repair using polyvinyl alcohol—hydrogel (PVA-H). J Biomed Mater Res. 2001;58:344–51.

    Article  Google Scholar 

  11. Cheng L, Zuo Y, Zou Q, Li J, Wang H, Shen J, et al. Effect of vanillin on the miscibility of poly (vinyl alcohol)/gelatin composite hydrogel: physical and chemical properties. J Appl Polym Sci. 2010;117:3687–93.

    Article  Google Scholar 

  12. Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules. 2000;33:2472–9.

    Article  Google Scholar 

  13. Kobayashi H, Ikada Y, Moritera T, et al. Tissue reactions induced by modified poly (vinyl alcohol) hydrogels in rabbit cornea. J Biomed Mater Res. 1992;26:1583–98.

    Article  Google Scholar 

  14. Kobayashi H, Kato M, Taguchi T, Ogura Y, Honda Y. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater Sci Eng C. 2004;24:729–35.

    Article  Google Scholar 

  15. Mathews DT, Birney YA, Cahill PA, McGuinness GB. Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and -insoluble chitosan. J Biomed Mater Res B. 2008;84:531–40.

    Article  Google Scholar 

  16. Wang J, Gao C, Zhang Y, Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C. 2010;30:214–8.

    Article  Google Scholar 

  17. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathana RN. Properties and sorption studies of chitosan–polyvinyl alcohol blend films. Carbohydr Polym. 2003;53:431–8.

    Article  Google Scholar 

  18. Klee D, Höcker H. Biomedical applications polymer blends. Biomed Appl Polym Blends. 1999;149:1–57.

    Article  Google Scholar 

  19. Liliensiek S, Campbell S, Nealey P, Murphy CJ. The scale of substratum topographic features modulates proliferation of corneal epithelial cells and corneal fibroblasts. J Biomed Mater Res A. 2006;79:185–92.

    Article  Google Scholar 

  20. Evans MD, Chaouk H, Wilkie JS, Dalton BA, Taylor S, Xie RZ, et al. The influence of surface topography of a porous perfluoropolyether polymer on corneal epithelial tissue growth and adhesion. Biomaterials. 2011;32:8870–9.

    Article  Google Scholar 

  21. Hicks C, Crawford G, Chirila T, Wiffen S, Vijayasekaran S, Lou X, et al. Development and clinical assessment of an artificial cornea. Prog Retin Eye Res. 2000;19:149–70.

    Article  Google Scholar 

  22. Xu F, Li Y, Yang X, Liao H, Zhang L. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. J Mater Sci Mater Med. 2007;18:635–40.

    Article  Google Scholar 

  23. Xu F, Li Y, Deng Y, Jie X. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro. J Biomater Sci Polymer Edn. 2008;19:431–9.

    Article  Google Scholar 

  24. Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, et al. Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Mater Sci Eng C. 2009;29:261–6.

    Article  Google Scholar 

  25. Zan X, Kozlov M, McCarthy TJ, Su Z. Covalently attached, silver-doped poly (vinyl alcohol) hydrogel films on poly (l-lactic acid). Biomacromolecules. 2010;11:1082–8.

    Article  Google Scholar 

  26. Myung D, Koh W, Bakri A, Zhang F, Marshall A, Ko J, et al. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices. 2007;9:911–22.

    Article  Google Scholar 

  27. Chirila TV. An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials. 2001;22:3311–7.

    Article  Google Scholar 

  28. Polisetti N, Islam MM, Griffith M. The artificial cornea. In: Wright B, Connon CJ, editors. Corneal regenerative medicine. New York: Humana Press; 2013. p. 45–52.

    Chapter  Google Scholar 

  29. Wang J, Gao C, Zhang Y, Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C. 2010;30:214–8.

    Article  Google Scholar 

  30. Miyashita H, Shimmura S, Kobayashi H, Taguchi T, Asano-Kato N, Uchino Y, et al. Collagen-immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. J Biomed Mater Res B. 2006;76:56–63.

    Article  Google Scholar 

  31. Jiang H, Li Y, Zuo Y, Yang W, Zhang L, Li J, et al. Physical and chemical properties of superparamagnetic Fe-incorporated nano hydroxyapatite. J Nanosci Nanotechnol. 2009;9:6844–50.

    Google Scholar 

  32. Leventouri T, Kis AC, Thompson JR, Anderson IM. Structure, microstructure, and magnetism in ferrimagnetic bioceramics. Biomaterials. 2005;26:4924–31.

    Article  Google Scholar 

  33. Riach Jr G. Eyeglasses having magnets attached thereto for improving the blood circulation of the eyes. United States Patents. Patent Number: 5389981; 1995.

  34. Kita M, Ogura Y, Honda Y, Hyon SH, Cha W, Ikada Y. Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graef Arch Clin Exp. 1990;228:533–7.

    Article  Google Scholar 

  35. Shi L. Some technical issues on the determination of polymer molecular weight with viscosity method. Chemistry. 1961;5:44–6.

    Google Scholar 

  36. Krevelen DWV. Properties of polymers. 3rd ed. Amsterdam: Elsevier; 1990.

    Google Scholar 

  37. Taghizadeh MT, Mehrdad A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry. Ultrason Sonochem. 2003;10:309–13.

    Article  Google Scholar 

  38. Chuah HH, Lin-Vien D, Soni U. Poly (trimethylene terephthalate) molecular weight and Mark–Houwink equation. Polymer. 2001;42:7137–9.

    Article  Google Scholar 

  39. Immergut EH, Brandrup J. Polymer handbook. 2nd ed. New York: Wiley; 1975.

    Google Scholar 

  40. Peppas NA, Merrill EW. Differential scanning calorimetry of crystallized PVA hydrogels. J Appl Polym Sci. 1976;20:1457–65.

    Article  Google Scholar 

  41. Van Beek M, Jones L, Sheardown H. Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials. 2008;29:780–9.

    Article  Google Scholar 

  42. Lombardo M, Penelope De Santo M, Lombardo G, Barberi R, Serrao S. Atomic force microscopy analysis of normal and photoablated porcine corneas. J Biomech. 2006;39:2719–24.

    Article  Google Scholar 

  43. Bayramoğlu G, Yılmaz M, Arıca MY. Affinity dye-ligand poly (hydroxyethyl methacrylate)/chitosan composite membrane for adsorption lysozyme and kinetic properties. Biochem Eng J. 2003;13:35–42.

    Article  Google Scholar 

  44. Lauritzen JI, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res Nat Bur Stand. 1960;64A:73–102.

    Article  Google Scholar 

  45. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F. Investigation of the crystallinity of freeze/thaw poly (vinyl alcohol) hydrogels by different techniques. Macromolecules. 2004;37:9510–6.

    Article  Google Scholar 

  46. Ma Y, Hu W, Reiter G. Lamellar crystal orientations biased by crystallization kinetics in polymer thin films. Macromolecules. 2006;39:5159–64.

    Article  Google Scholar 

  47. Cha WI, Hyon SH, Ikada Y. Transparent poly (vinyl alcohol) hydrogel with high water content and high strength. Die Makrom Chem. 1992;193:1913–25.

    Article  Google Scholar 

  48. Van Best JA, Bollemeijer JG, Sterk CC. Corneal transmission in whole human eyes. Exp Eye Res. 1988;46:765–8.

    Article  Google Scholar 

  49. Chirila TV, Hicks CR, Dalton PD, Vijayasekaran S, Lou X, Hong Y. Artificial cornea. Prog Polym Sci. 1998;23:447–73.

    Article  Google Scholar 

  50. Shanker RM, Ahmed I, Bourassa PA, Carola KV. An in vitro technique for measuring contact angles on the corneal surface and its application to evaluate corneal wetting properties of water soluble polymers. Int J Pharm. 1995;119:149–63.

    Article  Google Scholar 

  51. Zeng Y, Yang J, Huang K, Lee Z, Lee X. A comparison of biomechanical properties between human and porcine cornea. J Biomech. 2001;34:533–7.

    Article  Google Scholar 

  52. Jayasuriya AC, Ghosh S, Scheinbeim JI, Lubkin V, Bennett G, Kramer P. A study of piezoelectric and mechanical anisotropies of the human cornea. Biosens Bioelectron. 2003;18:381–7.

    Article  Google Scholar 

  53. Zhao Z, Liu J, Wasinger VC, Malouf T, Nguyen-Khuong T, Walsh B, et al. Tear lipocalin is the predominant phosphoprotein in human tear fluid. Exp Eye Res. 2010;90:344–9.

    Article  Google Scholar 

  54. Lin CH, Lin WC, Yang MC. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly (dimethyl siloxane-urethane)/Pluronic F127. Colloids Surf B. 2009;71:36–44.

    Article  Google Scholar 

  55. Zhang S, Borazjani RN, Salamone JC, Ahearn DG, Crow SA Jr, Pierce GE. In vitro deposition of lysozyme on etafilcon A and balafilcon A hydrogel contact lenses: effects on adhesion and survival of Pseudomonas aeruginosa and Staphylococcus aureus. Cont Lens Anterior Eye. 2005;28:113–9.

    Article  Google Scholar 

  56. Garrett Q, Garrett RW, Miltborp BK. Lysozyme sorption in hydrogel contact lenses. Invest Ophthalmol Vis Sci. 1999;40:897–903.

    Google Scholar 

  57. Norde W, Lyklema J. Why proteins prefer interfaces. In: Stuart C, Bamford T, editors. The Vroman effect: Festschrift in Honour of the 75th Birthday of Dr. Leo Vroman. Boca Raton: CRC Press; 1992. p. 1–20.

    Google Scholar 

  58. Hassan CM, Peppas NA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci. 2000;153:37–65.

    Article  Google Scholar 

  59. Barrett DA, Hartshorne MS, Hussain MA, Shaw PN, Davies MC. Resistance to nonspecific protein adsorption by poly (vinyl alcohol) thin films adsorbed to a poly (styrene) support matrix studied using surface plasmon resonance. Anal Chem. 2001;73:5232–9.

    Article  Google Scholar 

  60. Thomas P, Stuart B. A Fourier transform Raman spectroscopy study of water sorption by poly (vinyl alcohol). Spectrochim Acta A. 1997;53:2275–8.

    Article  Google Scholar 

  61. Jie W, Yubao L. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J. 2004;40:509–15.

    Article  Google Scholar 

  62. Pan F, Peng F, Jiang Z. Diffusion behavior of benzene/cyclohexane molecules in poly (vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation. Chem Eng Sci. 2007;62:703–10.

    Article  Google Scholar 

  63. Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure: the Beijing eye study. Am J Ophthalmol. 2007;144:461–2.

    Article  Google Scholar 

  64. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7:557–72.

    Article  Google Scholar 

  65. Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28:1664–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by China-Netherlands Program Strategic Alliances (No. 2008DFB50120), 863 National Key Project (No. 2011AA030102) and Sichuan Project (No. 2012FZ0125). The authors would like to thank Analytical & Testing Center and College of Polymer Science & Engineering of Sichuan University, China for the testing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zuo or Yubao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Zuo, Y., Zhang, L. et al. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea. J Mater Sci: Mater Med 25, 941–952 (2014). https://doi.org/10.1007/s10856-013-5121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5121-0

Keywords

Navigation