Skip to main content
Log in

Heparinization of a biomimetic bone matrix: integration of heparin during matrix synthesis versus adsorptive post surface modification

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study intended to evaluate a contemporary concept of scaffolding in bone tissue engineering in order to mimic functions of the extracellular matrix. The investigated approach considered the effect of the glycosaminoglycan heparin on structural and biological properties of a synthetic biomimetic bone graft material consisting of mineralized collagen. Two strategies for heparin functionalization were explored in order to receive a three-component bone substitute material. Heparin was either incorporated during matrix synthesis by mixing with collagen prior to simultaneous fibril reassembly and mineralization (in situ) or added to the matrix after fabrication (a posteriori). Both methods resulted in an incorporation of comparable amounts of heparin, though its distribution in the matrix varied as indicated by TOF-SIMS analyses, and a similar modulation of their protein binding properties. Differential scanning calorimetry revealed that the thermal stability and thereby the degree of crosslinking of the heparinized matrices was increased. However, in contrast to the a posteriori modification, the in situ integration of heparin led to considerable changes of morphology and composition of the matrix: a more open network of collagen fibers yielding a more porous surface and a reduced mineral content were observed. Cell culture experiments with human mesenchymal stem cells (hMSC) revealed a strong influence of the mode of heparin functionalization on cellular processes, as demonstrated for proliferation and osteogenic differentiation of hMSC. Our results indicate that not only heparin per se but also the way of its incorporation into a collagenous matrix determines the cell response. In conclusion, the a posteriori modification was beneficial to support adhesion, proliferation and differentiation of hMSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:S311–24.

    Article  Google Scholar 

  2. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25:1539–60.

    Google Scholar 

  3. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:S467–79. doi:10.1007/s00586-008-0745-3.

    Article  Google Scholar 

  4. Jia X, Kiick KL. Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci. 2009;9:140–56.

    Article  Google Scholar 

  5. Rosso F, Giordano A, Barbarasi M, Barbarasi A. From cell–ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

    Article  Google Scholar 

  6. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    Article  Google Scholar 

  7. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–44.

    Article  Google Scholar 

  8. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63:492–6.

    Article  Google Scholar 

  9. Wahl D, Czernuszka JT. Collagen–hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006;11:43–56.

    Google Scholar 

  10. Weiner S, Wagner HD. The material bone: structure–mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  Google Scholar 

  11. Bradt JH, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calciumphosphate formation. Chem Mater. 1999;11:2694–701.

    Article  Google Scholar 

  12. Gelinsky M, Welzel PB, Simon P, Bernhardt A, König U. Porous three dimensional scaffolds made of mineralised collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem Eng J. 2008;137:84–96.

    Article  Google Scholar 

  13. Burth R, Gelinsky M, Pompe W. Collagen–hydroxyapatite tapes—a new implant material. Tech Textile. 1999;8:20–1.

    Google Scholar 

  14. Hoyer B, Bernhardt A, Heinemann S, Stachel I, Meyer M, Gelinsky M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules. 2012;13:1059–66. doi:10.1021/bm201776r.

    Article  Google Scholar 

  15. Gelinsky M, Eckert M, Despang F. Biphasic, but monolithic scaffolds for the therapy of osteochondral defects. Int J Mater Res. 2007;98:749–55.

    Article  Google Scholar 

  16. Bernhardt A, Lode A, Boxberger S, Pompe W, Gelinsky M. Mineralised collagen—an artificial, extracellular bone matrix—improves osteogenic differentiation of bone marrow stromal cells. J Mater Sci Mater Med. 2008;19:269–75.

    Article  Google Scholar 

  17. Bernhardt A, Lode A, Mietrach C, Hempel U, Hanke T, Gelinsky M. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralised collagen. J Biomed Mater Res A. 2008;90A:852–62.

    Article  Google Scholar 

  18. Lode A, Bernhardt A, Gelinsky M. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. J Tissue Eng Reg Med. 2008;2:400–7.

    Article  Google Scholar 

  19. Domaschke H, Gelinsky M, Burmeister B, Fleig R, Hanke T, Reinstorf A, Pompe W, Rösen-Wolff A. In vitro ossification and remodeling of mineralized collagen I scaffolds. Tissue Eng. 2006;12:949–58.

    Article  Google Scholar 

  20. Sasisekharan R, Venkataraman G. Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol. 2000;4:626–31.

    Article  Google Scholar 

  21. Capila I, Linhardt RJ. Heparin–protein interactions. Angew Chem Int Ed Engl. 2002;41:319–412.

    Article  Google Scholar 

  22. Salbach J, Rachner TD, Rauner M, Hempel U, Anderegg U, Franz S, Simon JCh, Hofbauer LC. Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med. 2012;90:625–35.

    Article  Google Scholar 

  23. Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–75.

    Article  Google Scholar 

  24. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparin sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.

    Article  Google Scholar 

  25. Spinella FJ, Kiick KL, Fursta EM. The role of heparin self-association in the gelation of heparin functionalized polymers. Biomaterials. 2008;29:1299–306.

    Article  Google Scholar 

  26. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70.

    Article  Google Scholar 

  27. Lode A, Reinstorf A, Bernhardt A, Wolf-Brandstetter C, König U, Gelinsky M. Heparin modification of calcium phosphate bone cements for VEGF functionalization. J Biomed Mater Res A. 2008;86A:749–59.

    Article  Google Scholar 

  28. Benoit DSW, Anseth KS. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater. 2005;1:461–70.

    Article  Google Scholar 

  29. Müller G, Hanschke M. Quantitative and qualitative analyses of proteoglycans in cartilage extracts by precipitation with 1,9-dimethylmethylene blue. Connect Tissue Res. 1996;33:243–8.

    Article  Google Scholar 

  30. Vickerman J, Gilmore IS. Surface analysis-principal techniques. New York: Wiley; 2009.

    Book  Google Scholar 

  31. Friess W, Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials. 1996;17:2289–94.

    Article  Google Scholar 

  32. Na GC. Monomer and oligomer of type I collagen: molecular properties and fibril assembly. Biochemistry. 1989;28:7161–7.

    Article  Google Scholar 

  33. Tiktopulo EI, Kajava AV. Denaturation of type I collagen fibrils is an endothermic process accompanied by a noticeable change in the partial heat capacity. Biochemistry. 1998;37:8147–52.

    Article  Google Scholar 

  34. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.

    Article  Google Scholar 

  35. Kronick PL, Cooke P. Thermal stabilization of collagen fibers by calcification. Connect Tissue Res. 1996;33:275–82.

    Article  Google Scholar 

  36. Trebacz H, Wójtowicz K. Thermal stabilization of collagen molecules in bone tissue. Int J Biol Macromol. 2005;37:257–62.

    Article  Google Scholar 

  37. Mathews MB. The interaction of collagen and acid mucopolysaccharides. A model for connective tissue. Biochem J. 1965;96:710–6.

    Google Scholar 

  38. Öbrink B. A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur J Biochem. 1973;33:387–400.

    Article  Google Scholar 

  39. Stamov DR, Khoa Nguyen TA, Evans HM, Pfohl T, Werner C, Pompe T. The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Biomaterials. 2011;32:7444–5.

    Article  Google Scholar 

  40. Angele P, Kunjat R, Faltermeier H, Schuhmann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Müller R. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–41.

    Article  Google Scholar 

  41. Duan X, Sheardown H. Crosslinking of collagen with dendrimers. J Biomed Mater Res. 2005;75A:510–8.

    Article  Google Scholar 

  42. Teixeira S, Yang L, Dijkstra PJ, Ferraz MP, Monteiro FJ. Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. J Mater Sci Mater Med. 2010;21:2385–92.

    Article  Google Scholar 

  43. McPherson JM, Sawamura SJ, Condell RA, Rhee W, Wallace DG. The effects of heparin on the physicochemical properties of reconstituted collagen. Coll Relat Res. 1988;8:65–82.

    Article  Google Scholar 

  44. Murugesan S, Xie J, Linhardt RJ. Immobilization of heparin: approaches and applications. Curr Top Med Chem. 2008;8:80–100.

    Article  Google Scholar 

  45. Landis WJ, Silver FH. mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cell Tissues Organs. 2009;189:20–4.

    Article  Google Scholar 

  46. Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect Tissue Res. 2011;52:242–54.

    Article  Google Scholar 

  47. Rees SG, Shellis RP, Embery G. Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components. Biochem Biophys Res Commun. 2002;292:727–33.

    Article  Google Scholar 

  48. Rees SG, Hughes W, Embery G. Interaction of glucuronic acid and iduronic acid-rich glycosaminoglycans and their modified forms with hydroxyapatite. Biomaterials. 2002;23:481–9.

    Article  Google Scholar 

  49. Embery G, Rölla G, Stanbury JB. Interaction of acid glycosaminoglycans (mucopolysaccharides) with hydroxyapatite. Scand J Dent Res. 1979;87:318–24.

    Google Scholar 

  50. Hughes Wassell DT, Embery G. Adsorption of chondroitin-4-sulphate and heparin onto hydroxyapatite—effect of bovine serum albumin. Biomaterials. 1997;18:1001–7.

    Article  Google Scholar 

  51. Seto SP, Casas ME, Temenoff JS. Differentiation of mesenchymal stem cells in heparin-containing hydrogels via coculture with osteoblasts. Cell Tissue Res. 2012;347:589–601.

    Article  Google Scholar 

  52. Viswanadham RK, Kramer EJ. Elastic properties of reconstituted collagen hollow fibre membranes. J Mater Sci. 1976;11:1254–62.

    Article  Google Scholar 

  53. Wenger MP, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93:1255–63.

    Article  Google Scholar 

  54. Grant CA, Brockwell DJ, Radford SE, Thomson NH. Tuning the elastic modulus of hydrated collagen fibrils. Biophys J. 2009;97:2985–92.

    Article  Google Scholar 

  55. Xu B, Chow MJ, Zhang Y. Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int J Biomater. 2011;2011:172389.

    Article  Google Scholar 

  56. Lopez-Garcia MD, Beebe DJ, Crone WC. Young’s modulus of collagen at slow displacement rates. Biomed Mater Eng. 2010;20:361–9.

    Google Scholar 

  57. Hadjipanayi E. Engineering physical structure in biomimetic collagen scaffolds: strategies for regulating cell behavior. Doctoral thesis, University College London; 2010.

  58. Uygun BE, Stojsih SE, Matthew HWT. Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A. 2009;15:3499–512.

    Article  Google Scholar 

  59. Mathews S, Mathew SA, Gupta PK, Bhonde R, Totey S. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. J Tissue Eng Regen Med. 2012;. doi:10.1002/term.1507.

    Google Scholar 

  60. Liu ZM, Gu Q, Xu ZK, Groth T. Synergistic effect of polyelectrolyte multilayers and osteogenic growth medium on differentiation of human mesenchymal stem cells. Macromol Biosci. 2010;10:1043–54.

    Article  Google Scholar 

  61. Benoit DSW, Durney AR, Anseth KS. The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials. 2007;28:66–77.

    Article  Google Scholar 

  62. Almodovar J, Bacon S, Gogolski J, Kisiday JD, Kipper MJ. Polysaccharide-based polyelectrolyte multilayer surface coatings can enhance mesenchymal stem cell response to adsorbed growth factors. Biomacromolecules. 2010;11:2629–39.

    Article  Google Scholar 

  63. Bramono DS, Murali S, Rai B, Ling L, Poh WT, Lim ZX, et al. Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2). Bone. 2012;50:954–64.

    Article  Google Scholar 

  64. Ling L, Dombrowski C, Foong KM, Haupt LM, Stein GS, Nurcombe V, et al. Synergism between Wnt3a and heparin enhances osteogenesis via a phosphoinositide 3-kinase/Akt/RUNX2 pathway. J Biol Chem. 2010;285:26233–44.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Society (DFG) for financial support. This study was performed as part of the Collaborative Research Centre/Transregio 79 (SFB/TR 79, subproject M4). We thank Prof. Dr. M. Bornhäuser and co-workers (Medical Clinic I, University Hospital Carl Gustav Carus Dresden) for providing the hMSC. We are grateful to Ms. O. Zieschang for excellent technical assistance, Dr. B. Vetter (Institute for Material Science, Technische Universität Dresden) for the accomplishment of the mechanical tests as well as Dr. A. Bernhardt and Ms. B. Hoyer for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Lode.

Additional information

Ulla König and Anja Lode have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, U., Lode, A., Welzel, P.B. et al. Heparinization of a biomimetic bone matrix: integration of heparin during matrix synthesis versus adsorptive post surface modification. J Mater Sci: Mater Med 25, 607–621 (2014). https://doi.org/10.1007/s10856-013-5098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5098-8

Keywords

Navigation