Skip to main content
Log in

In vitro and in vivo assessment of the biocompatibility of an Mg–6Zn alloy in the bile

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

There is a great clinical need for biodegradable bile duct stents. Biodegradable stents made of an Mg–6Zn alloy were investigated in both vivo animal experiment and in vitro cell experiments. During the in vivo experiments, blood biochemical tests were performed to determine serum magnesium, serum creatinine (CREA), blood urea nitro-gen (BUN), serum lipase (LPS), total bilirubin (TB) and glutamic-pyruvic transaminase (GPT) levels. Moreover, tissue samples of common bile duct (CBD), liver and kidney were taken for histological evaluation. In the in vitro experiments, primary mouse extrahepatic bile duct epithelial cells (MEBDECs) were isolated and cultured. Cytotoxicity testing was carried out using the MTT method. Flow cytometry analyses with propidium iodide staining were performed to evaluate the effect of Mg–6Zn alloy extracts on cell cycle. The in vivo experiments revealed no significant differences (P > 0.05) in serum magnesium, CREA, BUN, LPS, TB or GPT before and after the operation. Based on the HE results, hepatocytes, bile duct epithelial cells, renal glomerulus and renal tubule tissues did not present significant necrosis. In the in vitro experiments, the cell relative growth rate curve did not change significantly from 20 to 40 % extracts. In vitro experiments showed that 20–40 % Mg–6Zn extracts are bio-safe for MEBDECs. In vivo experiments showed that Mg–6Zn stents did not affect several important bio-chemical parameters or, harm the function or morphology of the CBD, kidney, pancreas and liver. Our data suggested that this Mg–6Zn alloy is a safe biocompatible material for CBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Roslyn JJ, Tompkins RK. Reoperation for biliary strictures. Surg Clin North Am. 1991;71(1):109–16.

    Google Scholar 

  2. Van Boeckel PG, Vleggaar FP, Siersema PD. Plastic or metal stents for benign extrahepatic biliary strictures: a systematic review. BMC Gastroenterol. 2009;9:96–111.

    Article  Google Scholar 

  3. Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci Mater Med. 2006;17(7):611–7.

    Article  Google Scholar 

  4. Moss AC, Morris E, Leyden J, MacMathuna P. Do the benefits of metal stents justify the costs? A systematic review and meta-analysis of trials comparing endoscopic stents for malignant biliary obstruction. Eur J Gastroenterol Hepatol. 2007;19(12):1119–24.

    Article  Google Scholar 

  5. Xu X, Liu T, Liu S, Zhang K, Shen Z, Li Y, et al. Feasibility of biodegradable PLGA common bile duct stents: an in vitro and in vivo study. J Mater Sci Mater Med. 2009;20(5):1167–73.

    Article  Google Scholar 

  6. Itoi T, Kasuya K, Abe Y, Isayama H. Endoscopic placement of a new short-term biodegradable pancreatic and biliary stent in an animal model: a preliminary feasibility study (with videos). J Hepatobiliary Pancreat Sci. 2011;18(3):463–7.

    Article  Google Scholar 

  7. Yamamoto K, Yoshioka T, Furuichi K, Sakaguchi H, Anai H, Tanaka T, et al. Experimental study of poly-l-lactic acid biodegradable stents in normal canine bile ducts. Cardiovasc Intervent Radiol. 2011;34(3):601–8.

    Article  Google Scholar 

  8. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):399–411.

    Article  Google Scholar 

  9. Wang Z, Yan J, Zheng Q, Li J, Zhang X, Zhang S. Effects of biodegradable Mg–6Zn alloy extracts on cell cycle of intestinal epithelial cells. J Biomater Appl. 2013;27(6):739–47.

    Article  Google Scholar 

  10. Wu N, Veillette A. Immunology: magnesium in a signalling role. Nature. 2011;475(7357):462–3.

    Article  Google Scholar 

  11. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  Google Scholar 

  12. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–98.

    Article  Google Scholar 

  13. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6(5):1680–92.

    Article  Google Scholar 

  14. Zartner P, Cesnjevar R, Singer H, Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovas Interv. 2005;66(4):590–4.

    Article  Google Scholar 

  15. Hausmann U, Feussner H, Ahrens P, Heinzl J. Endoluminal endosurgery: rivet application in flexible endoscopy. Gastrointest Endosc. 2006;64(1):101–3.

    Article  Google Scholar 

  16. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626–40.

    Article  Google Scholar 

  17. ISO Part 5 and Part 12: test for in vitro cytotoxicity, and sample preparation and reference materials ISO 10993. 2009(E).

  18. Chai C, Zheng S, Feng J, Wu X, Yang J, Wei M. A novel method for establishment and characterization of extrahepatic bile duct epithelial cells from mice. In Vitro Cell Dev Biol Anim. 2010;46(10):820–3.

    Article  Google Scholar 

  19. Qiu K, Zhao XJ, Wan CX, Zhao CS, Chen YW. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials. 2006;27(8):1277–86.

    Article  Google Scholar 

  20. ISO Part 5. Biological evaluation of medical devices. Part 5. Tests for cytotoxicity: in vitro methods: ANSI/AAMI; 1999.

  21. Song G, Atrens A, StJohn D, Nairn J, Li Y. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros Sci. 1997;39(5):855–75.

    Article  Google Scholar 

  22. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003;89(6):651–6.

    Article  Google Scholar 

  23. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  Google Scholar 

  24. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.

    Article  Google Scholar 

  25. Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P. Biomimetic apatite formation on chemically treated titanium. Biomaterials. 2004;25(7–8):1187–94.

    Article  Google Scholar 

  26. Courtney T, Mark Evers B, Kenneth M. Sabiston textbook of surgery. Philadelphia: Elsevier; 2007. p. 1529–30.

    Google Scholar 

  27. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials. 2010;31(22):5782–8.

    Article  Google Scholar 

  28. Banai S, Haggroth L, Epstein SE, Casscells W. Influence of extracellular magnesium on capillary endothelial cell proliferation and migration. Circ Res. 1990;67(3):645–50.

    Article  Google Scholar 

  29. Sgambato A, Faraglia B, Ardito R, Torsello A, Boninsegna A, Cittadini A, et al. Isolation of normal epithelial cells adapted to grow at nonphysiological concentration of magnesium. Biochem Biophys Res Commun. 2001;286(4):752–7.

    Article  Google Scholar 

  30. Bruna P, Margaret K, Antonio G. Cell cycle and apoptosis. Neoplasia. 2000;2(4):291–9.

    Article  Google Scholar 

  31. Walker GM, Duffus JH. Magnesium ions and the control of the cell cycle in yeast. J Cell Sci. 1980;42:329–56.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30901422 & 51271117) and Shanghai Jiao Tong University Interdisciplinary (Biomedical Engineering) Research Fund (No. YG2010MS45). Shanghai Jiao Tong University School of Medicine Science and Technology Fund (No. 09XJ21005). The author Shaoxiang Zhang gratefully acknowledge the supports of Jiangsu Nature Science Foundation for Young Scholars (No. BK2012206) and Jiangsu Province Science and Technology Support Project (No. BE2013646).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaonong Zhang or Qi Zheng.

Additional information

Yigang Chen and Jun Yan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Yan, J., Zhao, C. et al. In vitro and in vivo assessment of the biocompatibility of an Mg–6Zn alloy in the bile. J Mater Sci: Mater Med 25, 471–480 (2014). https://doi.org/10.1007/s10856-013-5090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5090-3

Keywords

Navigation