Skip to main content
Log in

Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue engineered scaffolds and matrices have been investigated over the past decade for their potential in spinal cord repair. They provide a 3-D substrate that can be permissive for nerve regeneration yet have other roles including neuroprotection, altering the inflammatory cascade and mechanically stabilizing spinal cord tissue after injury. In this study we investigated very small lesions (approx. 0.25 μL in volume) of the dorsal column into which a phase-separated poly(2-hydroxyethyl methacrylate) hydrogel scaffold is implanted. Using fluorescent immunohistochemistry to quantify glial scarring, the poly(2-hydroxyethyl methacrylate) scaffold group showed reduced intensity compared to lesion controls for GFAP and the chondroitin sulfate proteoglycan neurocan after 6 days. However, the scaffold and tissue was also pushed dorsally after 6 days while the scaffold was not integrated into the spinal cord after 28 days. Overall, this small-lesion spinal cord injury model provided information on the host tissue reaction of a TE scaffold while reducing animal discomfort and care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci. 1999;19(19):8182–98.

    CAS  Google Scholar 

  2. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294–301.

    Article  CAS  Google Scholar 

  3. Dalton PD, Harvey AR, Oudega M, Plant GW. Tissue engineering of the nervous system. In: Van Blitterswijk C, Thompsen P, Lindhal A, Hubbell J, Williams DF, Cancedda R, et al., editors. Tissue engineering. Amsterdam: Academic Press; 2008. p. 611–47.

    Chapter  Google Scholar 

  4. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. doi:10.1146/annurev.bioeng.5.011303.120731.

    Article  CAS  Google Scholar 

  5. Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2010;27(1):1–19. doi:10.1089/neu.2009.0948.

    Article  Google Scholar 

  6. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. J Neurotrauma. 1996;13(7):343–59.

    Article  CAS  Google Scholar 

  7. Hulsebosch CE, Xu GY, Perez-Polo JR, Westlund KN, Taylor CP, McAdoo DJ. Rodent model of chronic central pain after spinal cord contusion injury and effects of gabapentin. J Neurotrauma. 2000;17(12):1205–17.

    Article  CAS  Google Scholar 

  8. Tsai MC, Shen LF, Kuo HS, Cheng H, Chak KF. Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Mol Cell Proteomics (MCP). 2008;7(9):1668–87. doi:10.1074/mcp.M800076-MCP200.

    Article  CAS  Google Scholar 

  9. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma. 2003;20(2):179–93.

    Article  Google Scholar 

  10. Jakeman LB, Guan Z, Wei P, Ponnappan R, Dzwonczyk R, Popovich PG, et al. Traumatic spinal cord injury produced by controlled contusion in mouse. J Neurotrauma. 2000;17(4):299–319.

    Article  CAS  Google Scholar 

  11. Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma. 2001;18(12):1399–407.

    Article  CAS  Google Scholar 

  12. Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries—histologic and functional correlates. Spine. 2007;32(25):2853–9.

    Article  Google Scholar 

  13. Mills CD, Hains BC, Johnson KM, Hulsebosch CE. Strain and model differences in behavioral outcomes after spinal cord injury in rat. J Neurotrauma. 2001;18(8):743–56. doi:10.1089/089771501316919111.

    Article  CAS  Google Scholar 

  14. King VR, Hewazy D, Alovskaya A, Phillips JB, Brown RA, Priestley JV. The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat. Neuroscience. 2010;168(2):523–30. doi:10.1016/j.neuroscience.2010.03.040.

    Article  CAS  Google Scholar 

  15. Khatun F, King V, Alovskaya A, Brown RA, Priestley JV. Fibronectin based biomaterials as a treatment for spinal cord injury. Tiss Eng. 2007;13(7):1697.

    Google Scholar 

  16. Itosaka H, Kuroda S, Shichinohe H, Yasuda H, Yano S, Kamei S, et al. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering. Neuropathology. 2009;29(3):248–57. doi:10.1111/j.1440-1789.2008.00971.x.

    Article  Google Scholar 

  17. Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A. Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J Neurosurg Spine. 2004;1(3):322–9.

    Article  Google Scholar 

  18. Kubinova S, Horak D, Hejcl A, Plichta Z, Kotek J, Proks V, et al. SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J Tiss Eng Regen Med. 2013;. doi:10.1002/term.1694.

    Google Scholar 

  19. Giannetti S, Lauretti L, Fernandez E, Salvinelli F, Tamburrini G, Pallini R. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurol Res. 2001;23(4):405–9.

    Article  CAS  Google Scholar 

  20. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated agarose scaffolds support linear axonal regeneration. Tiss Eng. 2006;12(10):2777–87.

    Article  CAS  Google Scholar 

  21. Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials. 2006;27(3):443–51. doi:10.1016/j.biomaterials.2005.06.039.

    Article  CAS  Google Scholar 

  22. Teng YD, Lavik EB, Qu XL, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(14):9606. doi:10.1073/pnas.112189299.

    CAS  Google Scholar 

  23. Kim H, Tator CH, Shoichet MS. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res Part A. 2011;97A:396–404.

    Article  Google Scholar 

  24. Dalton PD, Klee D, Moller M. Electrospinning with dual collection rings. Polymer. 2005;46(3):611–4. doi:10.1016/j.polymer.2004.11.075.

    Article  CAS  Google Scholar 

  25. Xu CY, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tiss Eng. 2004;10(7–8):1160–8. doi:10.1089/ten.2004.10.1160.

    CAS  Google Scholar 

  26. Chirila TV, Higgins B, Dalton PD. The effect of synthesis conditions on the properties of poly(2-hydroxyethyl methacrylate) sponges. Cell Polym. 1998;17(3):141–62.

    CAS  Google Scholar 

  27. Iannotti C, Zhang YP, Shields LB, Han Y, Burke DA, Xu XM, et al. Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma. 2006;23(6):853–65. doi:10.1089/neu.2006.23.853.

    Article  Google Scholar 

  28. Gelain F, Panseri S, Antonini S, Cunha C, Donega M, Lowery J, et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano. 2011;5(1):227–36. doi:10.1021/nn102461w.

    Article  CAS  Google Scholar 

  29. Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci. 1999;11(10):3648–58.

    Article  CAS  Google Scholar 

  30. Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. 2006;27(3):497–504. doi:10.1016/j.biomaterials.2005.07.008.

    Article  CAS  Google Scholar 

  31. Liu T, Houle JD, Xu JY, Chan BP, Chew SY. Nanofibrous collagen nerve conduits for spinal cord repair. Tiss Eng Part A. 2012;18(9–10):1057–66. doi:10.1089/ten.tea.2011.0430.

    Article  CAS  Google Scholar 

  32. King VR, Phillips JB, Hunt-Grubbe H, Brown R, Priestley JV. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. Biomaterials. 2006;27(3):485–96. doi:10.1016/j.biomaterials.2005.06.033.

    Article  CAS  Google Scholar 

  33. Bamber NI, Li HY, Aebischer P, Xu XM. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plast. 1999;6(4):103–21.

    Article  CAS  Google Scholar 

  34. Bamber NI, Li HY, Lu XB, Oudega M, Aebischer P, Xu XM. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci. 2001;13(2):257–68.

    CAS  Google Scholar 

  35. Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials. 2002;23(16):3369–76.

    Article  CAS  Google Scholar 

  36. Teng YD, Lavik EB, Qu XL, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002;99(5):3024–9. doi:10.1073/pnas.052678899.

    Article  CAS  Google Scholar 

  37. Bramlett HM. Sex differences and the effect of hormonal therapy on ischemic brain injury. Pathophysiology. 2005;12(1):17–27. doi:10.1016/j.pathophys.2005.02.009.

    Article  CAS  Google Scholar 

  38. Roof RL, Hall ED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J Neurotrauma. 2000;17(5):367–88.

    Article  CAS  Google Scholar 

  39. Crawford GJ, Chirila TV, Vijayasekaran S, Dalton PD, Constable IJ. Preliminary evaluation of a hydrogel core-and-skirt keratoprosthesis in the rabbit cornea. J Refract Surg. 1996;12(4):525–9.

    CAS  Google Scholar 

  40. Hicks C, Crawford G, Chirila T, Wiffen S, Vijayasekaran S, Lou X, et al. Development and clinical assessment of an artificial cornea. Prog Retinal Eye Res. 2000;19(2):149–70. doi:10.1016/s1350-9462(99)00013-0.

    Article  CAS  Google Scholar 

  41. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, et al. The cellular inflammatory response in human spinal cords after injury. Brain. 2006;129(Pt 12):3249–69. doi:10.1093/brain/awl296.

    Article  Google Scholar 

  42. Pekny M, Pekna M. Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 2004;204(4):428–37. doi:10.1002/Path.1645.

    Article  CAS  Google Scholar 

  43. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55. doi:10.1523/Jneurosci.3547-03.2004.

    Article  CAS  Google Scholar 

  44. Lu YB, Iandiev I, Hollborn M, Korber N, Ulbricht E, Hirrlinger PG, et al. Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J. 2011;25(2):624–31. doi:10.1096/Fj.10-163790.

    Article  CAS  Google Scholar 

  45. Woerly S, Petrov P, Sykova E, Roitbak T, Simonova Z, Harvey AR. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tiss Eng. 1999;5(5):467–88.

    Article  CAS  Google Scholar 

  46. Fuhrmann T, Hillen LM, Montzka K, Woltje M, Brook GA. Cell–cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials. 2010;31(30):7705–15. doi:10.1016/j.biomaterials.2010.06.060.

    Article  Google Scholar 

  47. Spilker MH, Yannas IV, Kostyk SK, Norregaard TV, Hsu HP, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci. 2001;18(1):23–38.

    CAS  Google Scholar 

  48. Spilker MH, Yannas IV, Hsu HP, Norregaard TV, Kostyk SK, Spector M. The effects of collagen-based implants on early healing of the adult rat spinal cord. Tiss Eng. 1997;3(3):309–17.

    Article  CAS  Google Scholar 

  49. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. 2000;20(7):2427–38.

    CAS  Google Scholar 

  50. Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci. 2005;21(2):378–90. doi:10.1111/j.1460-9568.2005.03876.x.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the support from the Natural National Science Foundation of China (Grants 30970727 and 31070844). We appreciate the help from Professor Lisa Xu with accommodating the in vivo experiments, Dr Brook Farrugia for SEM of the PCL electrospun membrane and Professor Alan Harvey for his instructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Zhou or Paul D. Dalton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H.Y., Führmann, T., Zhou, Y. et al. Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. J Mater Sci: Mater Med 24, 2001–2011 (2013). https://doi.org/10.1007/s10856-013-4956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4956-8

Keywords

Navigation