Skip to main content
Log in

Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm−1, and a hydroxyl band at 3,571 cm−1, which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gad El-Rab SMF, Fadl-allah SA, Montser AA. Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca–P apatite coat on anodized titania. Appl Surf Sci. 2012;261:1–7.

    Article  CAS  Google Scholar 

  2. Li L, Lu X, Meng YZ, Weyant CM. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance. J Mater Sci Mater Med. 2012;23:2359–68.

    Article  CAS  Google Scholar 

  3. Bir F, Khireddine H, Touati A, Sidane D, Yala S, Oudadesse H. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Appl Surf Sci. 2012;38:4885–93.

    Google Scholar 

  4. Yanovska A, Kuznetsov V, Stanislavov A, Danilchenko S, Sukhodub L. Calcium–phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field. Appl Surf Sci. 2012;258:8577–84.

    Article  CAS  Google Scholar 

  5. Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 2012;23:2335–47.

    Article  CAS  Google Scholar 

  6. Tan F, Naciri M, Dowling D, Al-Rubeai M. In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Biotechnol Adv. 2012;30:352–62.

    Article  CAS  Google Scholar 

  7. Li HJ, Zhao XN, Cao S, Li KZ, Chen MD, Xu ZW, et al. Na-doped hydroxyapatite coating on carbon/carbon composites: preparation, in vitro bioactivity and biocompatibility. Appl Surf Sci. 2012;263:163–73.

    Article  CAS  Google Scholar 

  8. Paluszkiewicz C, Slosarczyk A, Pijocha D, Sitarz M, Bucko M, Zima A, et al. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010;976:301–9.

    Article  CAS  Google Scholar 

  9. Mayer I, Cuisinier FJG, Gdalya S, Popov I. TEM study of the morphology of Mn2+-doped calcium hydroxyapatite and β-tricalcium phosphate. J Inorg Biochem. 2008;102:311–7.

    Article  CAS  Google Scholar 

  10. Sopyan I, Ramesh S, Nawawi NA, Tampieri A, Sprio S. Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram Int. 2011;37:3703–15.

    Article  CAS  Google Scholar 

  11. Park JW, Kim YJ, Jang JH. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface. Appl Surf Sci. 2011;258:977–85.

    Article  CAS  Google Scholar 

  12. Li Y, Widodo J, Lim S, Ooi CP. Synthesis and cytocompatibility of manganese(II) and iron(III) substituted hydroxyapatite nanoparticles. J Mater Sci. 2012;47:754–63.

    Article  CAS  Google Scholar 

  13. Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem. 2009;103:1666–74.

    Article  CAS  Google Scholar 

  14. Gyorgy E, Toricelli P, Socol G, Iliescu M, Mayer I, Mihailescu IN, et al. Biocompatible Mn2+-doped carbonated hydroxyapatite thin films grown by pulsed laser deposition. J Biomed Mater Res A. 2004;71A:353–8.

    Article  Google Scholar 

  15. Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, et al. Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials. 2005;26:2381–9.

    Article  CAS  Google Scholar 

  16. Erakovic S, Veljovic D, Diouf PN, Stevanovic T, Mitric M, Janackovic D, et al. The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat. 2012;75:275–83.

    Article  CAS  Google Scholar 

  17. Song YW, Shan DY, Han EH. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg–3Zn alloy. Mater Sci Eng C. 2013;33:78–84.

    Article  CAS  Google Scholar 

  18. Djosic MS, Panic V, Stojanovica J, Mitric M, Miskovic-Stankovic VB. The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium. Colloid Surf A. 2012;400:36–43.

    Article  CAS  Google Scholar 

  19. Huang Y, Yan YJ, Pang XF. Electrolytic deposition of fluorine-doped hydroxyapatite/ZrO2 films on titanium for biomedical applications. Ceram Int. 2013;39:245–53.

    Article  CAS  Google Scholar 

  20. Huang Y, Han SG, Pang XF, Ding QQ, Yan YJ. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci. 2012. doi:10.1016/j.apsusc.2013.01.187.

    Google Scholar 

  21. Maleki-Ghaleh H, Khalili V, Khalil-Allafi J, Javidi M. Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process. Surf Coat Technol. 2012;208:57–63.

    Article  CAS  Google Scholar 

  22. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  23. Blackwood DJ, Seah KHW, Han EH. Electrochemical cathodic deposition of hydroxyapatite: improvements in adhesion and crystallinity. Mater Sci Eng C. 2009;29:1233–8.

    Article  CAS  Google Scholar 

  24. Wang CX, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedance spectroscopy study. Biomaterials. 2003;24:3069–77.

    Article  CAS  Google Scholar 

  25. Nishiguchi S, Fujibayashi S, Kim HM, Kokubo T, Nakamura T. Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res A. 2003;67:26–35.

    Article  Google Scholar 

  26. Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits. Acta Biomater. 2009;5:2258–69.

    Article  CAS  Google Scholar 

  27. Zhao QM, Guo X, Dang XQ, Hao JM, Lai JH, Wang KZ. Preparation and properties of composite MAO/ECD coatings on magnesium alloy. Colloid Surf B. 2013;102:321–6.

    Article  CAS  Google Scholar 

  28. Chen JD, Wang YJ, Wei K, Zhang SH, Shi XT. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials. 2007;28:2275–80.

    Article  CAS  Google Scholar 

  29. Joseph Nathanael A, Mangalaraj D, Chi Chen P, Ponpandian N. Enhanced mechanical strength of hydroxyapatite nanorods reinforced with polyethylene. J Nanopart Res. 2011;13:1841–53.

    Article  CAS  Google Scholar 

  30. Wang J, Shaw LL. Morphology enhanced low temperature sintering of nanocrystalline hydroxyapatite. Adv Mater. 2007;19:2364–9.

    Article  CAS  Google Scholar 

  31. Zima A, Paszkiewicz Z, Siek D, Czechowska J, Slosarczyk A. Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceram Int. 2012;38:4935–42.

    Article  CAS  Google Scholar 

  32. Morales-Nietoa V, Navarro CH, Moreno KJ, Arizmendi-Morquecho A, Chavez-Valdez A, Garcia-Miranda S, et al. Poly(methyl methacrylate)/carbonated hydroxyapatite composite applied as coating on ultra-high molecular weight polyethylene. Prog Org Coat. 2013;76:204–8.

    Article  Google Scholar 

  33. Zhu X, Son DW, Ong JL, Kim KH. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium. J Mater Sci Mater Med. 2003;14:629–34.

    Article  CAS  Google Scholar 

  34. Narayanan R, Seshadri SK, Kwon TY, Kim KH. Calcium, phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B. 2008;85B:279–99.

    Article  CAS  Google Scholar 

  35. Goodhew PJ, Humphreys J, Beanland R. Electron microscopy and analysis. 3rd ed. London: Taylor and Francis; 2001. p. 180–200.

    Google Scholar 

  36. Dorozhkin SV. A review on the dissolution models of calcium apatites. Prog Cryst Growth Charact. 2002;44:45–61.

    Article  CAS  Google Scholar 

  37. Xie JH, Luan BL, Wang JF, Liu XY, Rorabeck C, Bourne R. Novel hydroxyapatite coating on new porous titanium and titanium–HDPE composite for hip implant. Surf Coat Technol. 2008;202:2960–8.

    Article  CAS  Google Scholar 

  38. Jiang HC, Rong LJ. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surf Coat Technol. 2006;201:1017–21.

    Article  CAS  Google Scholar 

  39. BS ISO 13779-2:2000: Implants for surgery—hydroxyapatite—Part 2: coatings of hydroxyapatite. London: British Standards Institution.

  40. Thian ES, Huang J, Best SM, Barber ZH, Brooks RA, Rushton N, et al. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials. 2006;27:2692–8.

    Article  CAS  Google Scholar 

  41. Eliaz N, Ritman-Hertz O, Aronov D, Weinberg E, Shenhar Y, Rosenman G, et al. The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria. J Mater Sci Mater Med. 2011;22:1741–52.

    Article  CAS  Google Scholar 

  42. Zhao XZ, Li HJ, Chen MD, Li KZ, Wang B, Xu ZW, et al. Strong-bonding calcium phosphate coatings on carbon/carbon composites by ultrasound-assisted anodic oxidation treatment and electrochemical deposition. Appl Surf Sci. 2012;258:5117–25.

    Article  CAS  Google Scholar 

  43. Abdal-Hay A, Barakat NAM, Lim JK. Hydroxyapatite-doped poly(lactic acid) porous film coating for enhanced bioactivity and corrosion behavior of AZ31 Mg alloy for orthopedic applications. Ceram Int. 2013;39:183–95.

    Article  CAS  Google Scholar 

  44. Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci. 2012;58:145–51.

    Article  CAS  Google Scholar 

  45. Kim HS, Yoo SJ, Ahn JW, Kim DH, Kim WJ. Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater Sci Eng A. 2011;528:8479–85.

    Article  CAS  Google Scholar 

  46. Mohamed KR, El-Rashidy ZM, Salama AA. In vitro properties of nanohydroxyapatite/chitosan biocomposites. Ceram Int. 2011;37:3265–71.

    Article  CAS  Google Scholar 

  47. Yugeswaran S, Yoganand CP, Kobayashi A, Paraskevopoulos KM, Subramanian B. Mechanical properties, electrochemical corrosion and in vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying. J Mech Behav Biomed Mater. 2012;9:22–33.

    Article  CAS  Google Scholar 

  48. Chatzistavrou X, Zorba T, Chrissafis K, Kaimakamis G, Kontonasaki E, Koidis P. Influence of particle size on the crystallization process and the bioactive behavior of a bioactive glass system. J Therm Anal Calorim. 2006;85:253–9.

    Article  CAS  Google Scholar 

  49. Medvecky L, Stulajterova R, Parilak L, Trpcevska J, Durisin J, Barinov SM. Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloid Surf A. 2006;281:221–9.

    Article  CAS  Google Scholar 

  50. Mayer I, Jacobsohn O, Niazov T, Werckman J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;7:1445–51.

    Article  Google Scholar 

  51. Mayer I, Cuisinier FJG, Popov I, Schleich Y, Gdalya S, Burghaus O, et al. Phase relations between β-tricalcium phosphate and hydroxyapatite with manganese(II): structural and spectroscopic properties. Eur J Inorg Chem. 2006;7:1460–5.

    Article  Google Scholar 

  52. Armulik A, Svineng G, Wennerberg K, Faessler R, Johansson S. Expression of integrin subunit beta1B in integrin beta1-deficient GD25 cells does not interfere with alphaVbeta3 functions. Exp Cell Res. 2000;254:55–63.

    Article  CAS  Google Scholar 

  53. Bae YJ, Kim MH. Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res. 2008;124:28–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (“973” Program, No. 2011CB503700), the outstanding doctoral academic projects of the University of Electronic Science and Technology of China (No. YBXSZC20131042) and the Natural Science Foundation of China (No. 61071026). The authors thank Xuexin Wang for his assistance in the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Ding, Q., Han, S. et al. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci: Mater Med 24, 1853–1864 (2013). https://doi.org/10.1007/s10856-013-4955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4955-9

Keywords

Navigation