Skip to main content
Log in

In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the biocompatibility and potential toxicity of apatite-coated magnetite nanoparticles. The in vitro biocompatibility with human red blood cells was evaluated, not hemolytic effects were found at concentrations lower than 3 mg/ml. For the in vivo study, Balb/c mice were used. The animals were injected intravenously or intraperitoneally, the doses ranged from 100 to 2,500 mg/Kg. All the injected animals showed normal kidney and liver function. No significant changes were found in the body weight, the organs weight and the iron levels in liver due to the administration. In conclusion, apatite-coated magnetite nanoparticles did not induce any abnormal clinical signs in the laboratory animals. The results demonstrated that apatite-coated magnetite nanoparticles of 8 ± 2 nm in size did not have hemolytic effect in human erythrocytes and did not cause apparent toxicity in Balb/c mice under the experimental conditions of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tartaj P. Nanomagnets-from fundamental physics to biomedicine. Curr Nano Sci. 2006;2:43–53.

    Article  CAS  Google Scholar 

  2. Corot C. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliver Rev. 2006;58:1471–504.

    Article  CAS  Google Scholar 

  3. Gonzalez-Fernandez MA, Torres TE, Andrés-Vergés M, Costo R, De la Presa P, Serna CJ, Morales MP, Marquina C, Ibarra MR, Goya GF. Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Solid State Chem. 2009;182:2779–84.

    Article  CAS  Google Scholar 

  4. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mat. 2005;293:483–96.

    Article  CAS  Google Scholar 

  5. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharmacol. 2008;5:487–95.

    Article  CAS  Google Scholar 

  6. Hanson S, Lalor PA, Niemi SM, Northup SJ, Ratner BD, Spector M, Vale BH, Willson JE. Testing biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials Science. An introduction to materials in medicine. San Diego: Academic Press; 1996. p. 215.

    Google Scholar 

  7. Klaassen CD, Watkins JB. Basics of toxicology. Madrid: McGraw-Hill; 2005. p. 560.

    Google Scholar 

  8. Múzquiz-Ramos EM, Cortés-Hernández DA, Escobedo-Bocardo J. Biomimetic apatite coating on magnetite particles. Mat Lett. 2010;64:1117–9.

    Article  Google Scholar 

  9. Betancourt R, Ayala O, García LA, Rodríguez O, Matutes J, Ramos G, Yee H. Synthesis and magneto-structural study of CoxFe3−xO4 nanoparticles. J Magn Magn Mat. 2005;294:33–6.

    Article  Google Scholar 

  10. Martínez A, Izquierdo I, Vallet M. Bioactivity of a CaO–SiO2 binary glasses system. Chem Mater. 2000;12:3080–8.

    Article  Google Scholar 

  11. Kokubo T, Kushitani H, Sakka S. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  12. NCL Method ITA-1: Analysis of hemolytic properties of nanoparticles.Nanotechnology characterization laboratory. National Cancer Institute-Frederick. http://ncl.cancer.gov/NCL_Method_ITA-1.pdf. (2009) Accessed 27 April 2011.

  13. ASTM F-756. Standard practice for assessment of hemolytic properties of materials, 2009, annual book of ASTM standars. Committee F04 medical and surgical materials and devices, subcommittee F04.16 biocompatibility test methods. Philadelphia: American Society for Testing and Materials; 2009.

    Google Scholar 

  14. Mexican Official Standard NOM-062-ZOO-1999. http://www.economia-noms.gob.mx/ Accessed 12 Dec 2010.

  15. Pereira MC, Pereira ML, Sousa JP. Histological effects of iron accumulation on mice liver and spleen after administration of a metallic solution. Biomaterials. 1999;20:2193–8.

    Article  CAS  Google Scholar 

  16. Okuda M, Takeguchi M, Ruairc O, Tagaya M, Zhu Y, Hashimoto A, Hanagata N, Schmitt W, Ikoma T. Structural analysis of hydroxyapatite coating on magnetite nanoparticles using energy filter imaging and electron tomography. J Electron Microsc. 2010;59:173–9.

    Article  CAS  Google Scholar 

  17. Bretcanu O, Spriano S, Brovarone C, Verne E. Synthesis and characterization of coprecipitation-derived ferromagnetic glass-ceramic. J Mater Sci. 2006;41:1029–37.

    Article  CAS  Google Scholar 

  18. Kim DH, Nikles DE, Johnson DT, Brazel CS. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Mag Magn Mat. 2008;320:2390–6.

    Article  CAS  Google Scholar 

  19. Wang ZY, Song J, Zhang DS. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J Gastroenterol. 2009;15:2995–3002.

    Article  CAS  Google Scholar 

  20. Haidar ZS, Hamdy RC, Tabrizian M. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats. Biomaterials. 2010;31:2746–54.

    Article  CAS  Google Scholar 

  21. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm. 2007;5:316–27.

    Article  Google Scholar 

  22. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D. 2003;36:167–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elia Martha Múzquiz-Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Múzquiz-Ramos, E.M., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C. et al. In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy. J Mater Sci: Mater Med 24, 1035–1041 (2013). https://doi.org/10.1007/s10856-013-4862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4862-0

Keywords

Navigation