Skip to main content

Advertisement

Log in

Microwave assisted synthesis of amorphous magnesium phosphate nanospheres

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg2+ and HPO4 2−/PO4 3−. Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  2. Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26:6113–21.

    Article  CAS  Google Scholar 

  3. Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater. 2009;88:597–610.

    Google Scholar 

  4. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG. Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int. 2003;72:32–41.

    Article  CAS  Google Scholar 

  5. Salimi MH, Heughebaert JC, Nancollas GH. Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir. 1985;1:119–22.

    Article  CAS  Google Scholar 

  6. Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, Bose S. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J Mater Sci Mater Med. 2008;19:2669–77.

    Article  CAS  Google Scholar 

  7. Paul W, Sharma CP. Effect of calcium, zinc and magnesium on the attachment and spreading of osteoblast like cells onto ceramic matrices. J Mater Sci Mater Med. 2007;18:699–703.

    Article  CAS  Google Scholar 

  8. Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials. 2009;30:5041–8.

    Article  CAS  Google Scholar 

  9. Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, et al. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med. 2011;22:607–15.

    Article  CAS  Google Scholar 

  10. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  CAS  Google Scholar 

  11. Ibasco S, Tamimi F, Meszaros R, Nihouannen DL, Vengallatore S, Harvey E, et al. Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomater. 2009;5:2338–47.

    Article  CAS  Google Scholar 

  12. Klammert U, Ignatius A, Wolfram U, Reuther T, Gbureck U. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater. 2011;7:3469–75.

    Article  CAS  Google Scholar 

  13. Mestres G, Ginebra MP. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 2011;7:1853–61.

    Article  CAS  Google Scholar 

  14. Jia J, Zhou H, Wei J, Jiang X, Hua H, Chen F, et al. Development of magnesium calcium phosphate biocement for bone regeneration. J R Soc Interface. 2010;7:1171–80.

    Article  CAS  Google Scholar 

  15. Klammert U, Vorndran E, Reuther T, Muller FA, Zorn K, Gbureck U. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J Mater Sci Mater Med. 2010;21:2947–53.

    Article  CAS  Google Scholar 

  16. Aramendia MG, Borau V, Jimenez C, Marinas JM, Romero F. J. Synthesis and characterization of magnesium phosphates and their catalytic properties in the conversion of 2-hexanol. J Colloid Interface Sci. 1999;217:288–98.

    Article  CAS  Google Scholar 

  17. Bhakta G, Mitra S, Maitra A. DNA encapsulated magnesium and manganous phosphate nanoparticles: potential non-viral vectors for gene delivery. Biomaterials. 2005;26:2157–63.

    Article  CAS  Google Scholar 

  18. Kurtulus G, Tas AC. Transformations of neat and heated struvite (MgNH4PO4·6H2O). Mater Lett. 2011;65:2883–6.

    Article  CAS  Google Scholar 

  19. Tamimi F, Le Nihouannen D, Bassett DC, Ibasco S, Gbureck U, Knowles J, et al. Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomater. 2011;7:2678–85.

    Article  CAS  Google Scholar 

  20. Tao J, Pan H, Wang J, Wu J, Wang B, Xu X, et al. Evaluation of amorphous calcium phosphate to hydroxyapatite probed by gold nanoparticles. J Phys Chem C. 2008;112:14929–33.

    Article  CAS  Google Scholar 

  21. Francis MD, Webb NC. Hydroxyapatite formation from a hydrated calcium monoydrogen phosphate precursor. Calcif Tiss Res. 1971;6:335–42.

    Article  CAS  Google Scholar 

  22. Posner AS, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res. 1975;8:273–81.

    Article  CAS  Google Scholar 

  23. Zhou H, Bhaduri S. Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater. 2012;100:1142–50.

    Google Scholar 

  24. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65:188–95.

    Article  Google Scholar 

  25. Weisinger JR, Bellorín-Font E. Magnesium and phosphorus. Lancet. 1998;352:391–6.

    Article  CAS  Google Scholar 

  26. Jalota S, Bhaduri SB, Tas AC. Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. J Mater Sci Mater Med. 2006;17:697–707.

    Article  CAS  Google Scholar 

  27. Zhou H, Lawrence JG, Touny AH, Bhaduri SB. Biomimetic coating of bisphosphonate incorporated CDHA on Ti6Al4V. J Mater Sci Mater Med. 2012;23:365–74.

    Article  CAS  Google Scholar 

  28. Zhou H, Touny A, Bhaduri S. Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning. J Mater Sci Mater Med. 2011;22:1183–93.

    Article  CAS  Google Scholar 

  29. Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res. 2004;19:2742–9.

    Article  CAS  Google Scholar 

  30. Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.

    Article  CAS  Google Scholar 

  31. Constantz BR, Barr BM, Ison IC, Fulmer MT, Baker J, McKinney L, et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res. 1998;43:451–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Luchini, T.J.F. & Bhaduri, S.B. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres. J Mater Sci: Mater Med 23, 2831–2837 (2012). https://doi.org/10.1007/s10856-012-4743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4743-y

Keywords

Navigation