Skip to main content

Advertisement

Log in

Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Repair of massive bone loss remains a challenge to the orthopaedic surgeons. Autologous and allogenic bone grafts are choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of tissue engineering. In the present work, the bone regeneration potential of nanohydroxyapatite/chitosan composite scaffolds were compared with pure chitosan scaffolds when implanted into segmental bone defects in rabbits. Critical size bone defects (6 mm diameter, 10 mm length) were created in the left femoral condyles of 43 adult New Zealand white rabbits. The femoral condyle bone defects were repaired by nanohydroxyapatite/chitosan compositions, pure chitosan or left empty separately. Defect-bridging was detected by plain radiograph and quantitative computer tomography at eight and 12 weeks after surgery. Tissue samples were collected for gross view and histological examination to determine the extent of new bone formation. Eight weeks after surgery, more irregular osteon formation was observed in the group treated with nanohydroxyapatite/chitosan composites compared with those treated with pure chitosan. 12 weeks after surgery, complete healing of the segmental bone defect was observed in the nanohydroxyapatite/chitosan-group, while the defect was still visible in the chitosan-group, although the depth of the defect had diminished. These observations suggest that the injectable nanohydroxyapatite/chitosan scaffolds are potential candidate materials for regeneration of bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Hadlock TA, Vacanti JP, Cheney ML. Tissue engineering in facial plastic and reconstructive surgery. Facial Plast Surg. 1998;14(3):197–203.

    Article  CAS  Google Scholar 

  2. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate. Biomaterials. 2007;28(6):1005–13.

    Article  CAS  Google Scholar 

  3. Komaki H, Tanaka T, Chazono M, Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials. 2006;27(29):5118–26.

    Article  CAS  Google Scholar 

  4. Samartzis D, Shen FH, Goldberg EJ, An HS. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine(Phila Pa 1976). 2005;30(15):1756–61.

  5. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71(4):677–80.

    CAS  Google Scholar 

  6. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  Google Scholar 

  7. Clements JR, Carpenter BB, Pourciau JK. Treating segmental bone defects: a new technique. J Foot Ankle Surg. 2008;47(4):350–6.

    Article  Google Scholar 

  8. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  Google Scholar 

  9. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  10. Specchia N, Pagnotta A, Cappella M, Tampieri A, Greco F. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. J Mater Sci. 2002;37(3):577–84.

    Article  CAS  Google Scholar 

  11. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B. 2005;72(1):94–101.

    Article  Google Scholar 

  12. Norimitsu W. Studies on shell formation: XI. Crystal—matrix relationships in the inner layers of mollusk shells. J Ultrastruct Res. 1965;12(3):351–70.

    Article  Google Scholar 

  13. Wang X, Li Y, Wei J, de Groot K. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002;23(24):4787–91.

    Article  CAS  Google Scholar 

  14. Thein-Han WW, Stevens WF. Transdermal delivery controlled by a chitosan membrane. Drug Dev Ind Pharm. 2004;30(4):397–404.

    Article  CAS  Google Scholar 

  15. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–49.

    Article  CAS  Google Scholar 

  16. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55(3):304–12.

    Article  CAS  Google Scholar 

  17. Huang Z, Tian J, Yu B, Xu Y, Feng Q. A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed Mater. 2009;4(5):55005.

    Article  Google Scholar 

  18. Giavaresi G, Fini M, Salvage J, Nicoli AN, Giardino R, Ambrosio L, Nicolais L, Santin M. Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. J Mater Sci Mater Med. 2010;21(2):615–26.

    Article  CAS  Google Scholar 

  19. Weitao Y, Kangmei K, Xinjia W, Weili Q. Bone regeneration using an injectable calcium phosphate/autologous iliac crest bone composites for segmental ulnar defects in rabbits. J Mater Sci Mater Med. 2008;19(6):2485–92.

    Article  Google Scholar 

  20. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132:15–30.

    CAS  Google Scholar 

  21. Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, Basu D. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B. 2008;86(1):217–27.

    Google Scholar 

  22. Cutright DE, Bhaskar SN, Brady JM, Getter L, Posey WR. Reaction of bone to tricalcium phosphate ceramic pellets. Oral Surg Oral Med Oral Pathol. 1972;33(5):850–6.

    Article  CAS  Google Scholar 

  23. Zhang H, Ye XJ, Li JS. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Biomed Mater. 2009;4(4):45007.

    Article  Google Scholar 

  24. De Aza PN, Luklinska ZB, Santos C, Guitian F, De Aza S. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials. 2003;24(8):1437–45.

    Article  Google Scholar 

  25. Heikkila JT, Aho HJ, Yli-Urpo A, Happonen RP, Aho AJ. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop Scand. 1995;66(5):463–7.

    Article  CAS  Google Scholar 

  26. Tien YC, Chih TT, Lin JH, Ju CP, Lin SD. Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br. 2004;86(7):1072–6.

    Article  CAS  Google Scholar 

  27. Carey LE, Xu HH, Simon CJ, Takagi S, Chow LC. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials. 2005;26(24):5002–14.

    Article  CAS  Google Scholar 

  28. Knabe C, Berger G, Gildenhaar R, Meyer J, Howlett CR, Markovic B, Zreiqat H. Effect of rapidly resorbable calcium phosphates and a calcium phosphate bone cement on the expression of bone-related genes and proteins in vitro. J Biomed Mater Res A. 2004;69(1):145–54.

    Article  CAS  Google Scholar 

  29. Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007;7(4):475–90.

    Article  Google Scholar 

  30. Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A. 2009;88(2):491–502.

    Google Scholar 

  31. Thein-Han WW, Misra RD. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(4):1182–97.

    Article  CAS  Google Scholar 

  32. Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials. 2006;27(9):1859–67.

    Article  CAS  Google Scholar 

  33. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials. 2005;26(26):5414–26.

    Article  CAS  Google Scholar 

  34. Manjubala I, Scheler S, Bossert J, Jandt KD. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater. 2006;2(1):75–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Natural Science Foundation of Guangdong Province, China (Grant No. 7005193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhu, L., Lv, H. et al. Repair of rabbit femoral condyle bone defects with injectable nanohydroxyapatite/chitosan composites. J Mater Sci: Mater Med 23, 1941–1949 (2012). https://doi.org/10.1007/s10856-012-4662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4662-y

Keywords

Navigation