Skip to main content
Log in

Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide processing of poly-l-lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200–400 μm from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology. 2005;65(15-16 SPEC. ISS.):2385–406.

  2. Davies JE. Bone Engineering. Davies JE, ed. Toronto: University of Toronto Press; 2000.

  3. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(SUPPL. 2).

  4. An YH, Woolf SK, Friedman RJ. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials. 2000;21(24):2635–52.

    Article  CAS  Google Scholar 

  5. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.

    Article  CAS  Google Scholar 

  6. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  CAS  Google Scholar 

  7. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci. 2007;32(4):455–82.

    Article  CAS  Google Scholar 

  8. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  Google Scholar 

  9. Mano Jf, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789–817.

    Article  CAS  Google Scholar 

  10. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–59.

    Article  CAS  Google Scholar 

  11. Mathieu LM, Montjovent MO, Bourban PE, Pioletti DP, Manson JAE. Bioresorbable composites prepared by supercritical fluid foaming. J Biomed Mater Res. 2005;75(1):89–97.

    Article  CAS  Google Scholar 

  12. Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(6):905–16.

    Article  CAS  Google Scholar 

  13. Bühler M, Bourban PE, Manson JAE. Cellular composites based on continuous fibres and bioresorbable polymers. Compos A Appl Sci Manuf. 2008;39(12):1779–86.

    Article  Google Scholar 

  14. Bühler M, Bourban PE, Manson JAE. Cellular thermoplastic composites with microstructural gradients of fibres and porosity. Compos Sci Technol. 2008;68(3–4):820–8.

    Article  Google Scholar 

  15. Higashi S, Yamamuro T, Nakamura T. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials. 1986;7(3):183–7.

    Article  CAS  Google Scholar 

  16. Zambonin G, Grano M. Biomaterials in orthopaedic surgery: effects of different hydroxyapatites and de-mineralized bone matrix on proliferation rate and bone matrix synthesis by human osteoblasts. Biomaterials. 1995;16(5):397–402.

    Article  CAS  Google Scholar 

  17. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992;6(3):879–85.

    CAS  Google Scholar 

  18. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28(1):271–98.

    Article  CAS  Google Scholar 

  19. Posner AS. Crystal chemistry of bone mineral. Physiol Rev. 1969;49(4):760–92.

    CAS  Google Scholar 

  20. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21(17):1803–10.

    Article  CAS  Google Scholar 

  21. Kim HW. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res. 2007;83(1):169–77.

    Article  Google Scholar 

  22. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 2006;47:8–17.

    Article  Google Scholar 

  23. Kim HW, Kim HE, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16(12):1529–35.

    Article  Google Scholar 

  24. Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, et al. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials. 2005;26(63):14–22.

    Google Scholar 

  25. Forman S, Káš J, Fini F, Steinberg M, Ruml T. The effect of different solvents on the ATP/ADP content and growth properties of HeLa cells. J Biochem Mol Toxicol. 1999;13(1):11–5.

    Article  CAS  Google Scholar 

  26. Mihai M, Huneault MA, Favis BD. Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide. J Appl Polym Sci. 2009;113(5):2920–32.

    Article  CAS  Google Scholar 

  27. Jacobs LJM, Kemmere MF, Keurentjes JTF. Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chem. 2008;10(7):731–8.

    Article  CAS  Google Scholar 

  28. Reverchon E, Adami R, Cardea S, Porta GD. Supercritical fluids processing of polymers for pharmaceutical and medical applications. J Supercrit Fluids. 2009;47(3):484–92.

    Article  CAS  Google Scholar 

  29. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Compos Sci Technol. 2005;65(15–16):2344–63.

    Article  CAS  Google Scholar 

  30. Kang DJ, Xu D, Zhang ZX, Pal K, Bang DS, Kim JK. Well-controlled microcellular biodegradable PLA/Silk composite foams using supercritical CO2. Macromol Mater Eng. 2009;294(9):620–4.

    Article  CAS  Google Scholar 

  31. Fujimoto Y, Sinha Ray S, Okamoto M, Ogami A, Yamada K, Ueda K. Well-controlled biodegradable nanocomposite foams: from microcellular to nanocellular. Macromol Rapid Commun. 2003;24(7):457–61.

    Article  CAS  Google Scholar 

  32. Ema Y, Ikeya M, Okamoto M. Foam processing and cellular structure of polylactide-based nanocomposites. Polymer. 2006;47(15):5350–9.

    Article  CAS  Google Scholar 

  33. Strauss W, D’Souza NA. Supercritical CO2 processed polystyrene nanocomposite foams. J Cell Plast. 2004;40(3):229–41.

    Article  CAS  Google Scholar 

  34. Nam PH, Maiti P, Okamoto M, Kotaka T, Nakayama T, Takada M, et al. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci. 2002;42(9):1907–18.

    Article  CAS  Google Scholar 

  35. Di Y, Iannace S, Di Maio E, Nicolais L. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci, Part B: Polym Phys. 2005;43(6):689–98.

    Article  CAS  Google Scholar 

  36. Zeng C, Han X, Lee LJ, Koelling KW, Tomasko DL. Polymer-clay nanocomposite foams prepared using carbon dioxide. Adv Mater. 2003;15(20):1743–7.

    Article  CAS  Google Scholar 

  37. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules. 2002;35(6):2042–9.

    Article  CAS  Google Scholar 

  38. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45(17):5985–94.

    Article  CAS  Google Scholar 

  39. Delabarde C, Plummer CJG, Bourban PE, Månson JAE. Solidification behavior of PLLA/nHA nanocomposites. Compos Sci Technol. 2010;70(13):1813–9.

    Article  CAS  Google Scholar 

  40. Mathieu LM, Bourban PE, Manson JAE. Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol. 2006;66(11–12):1606–14.

    Article  CAS  Google Scholar 

  41. Takada M, Hasegawa S, Ohshima M. Crystallization kinetics of poly(l-lactide) in contact with pressurized CO2. Polym Eng Sci. 2004;44(1):186–96.

    Article  CAS  Google Scholar 

  42. Takada M, Tanigaki M, Ohshima M. Effects of CO2 on crystallization kinetics of polypropylene. Polym Eng Sci. 2001;41(11):1938–46.

    Article  CAS  Google Scholar 

  43. Roshan-Ghias A, Terrier A, Bourban PE, Pioletti DP. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffolds. Eur Cells Mater. 2010;19:41–9.

    CAS  Google Scholar 

  44. Van Der Pol U, Mathieu L, Zeiter S, Bourban PE, Zambelli PY, Pearce SG, et al. Augmentation of bone defect healing using a new biocomposite scaffold: an in vivo study in sheep. Acta Biomater. 2010;6(9):3755–62.

    Article  Google Scholar 

  45. Lee MJ, Sohn SK, Kim KT, Kim CH, Ahn HB, Rho MS, et al. Effect of hydroxyapatite on bone integration in a rabbit tibial defect model. Clin Orthop Surg. 2010;2(2):90–7.

    Article  Google Scholar 

  46. Monfoulet L, Rabier B, Chassande O, Fricain JC. Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int. 2010;86(1):72–81.

    Article  CAS  Google Scholar 

  47. Pyda M, Bopp RC, Wunderlich B. Heat capacity of poly(lactic acid). J Chem Thermodyn. 2004;36(9):731–42.

    Article  CAS  Google Scholar 

  48. Colton JS, Suh NP. Nucleation of microcellular thermoplastic foam with additives: part i: theoretical considerations. Polym Eng Sci. 1987;27(7):485–92.

    Article  CAS  Google Scholar 

  49. Park CB, Cheung LK. A study of cell nucleation in the extrusion of polypropylene foams. Polym Eng Sci. 1997;37(1):1–10.

    Article  CAS  Google Scholar 

  50. Teng X, Ren J, Gu S. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. J Biomed Mater Res Appl Biomater. 2007;81(1):185–93.

    Google Scholar 

  51. Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cells and Mater. 2007;14:64–76.

    CAS  Google Scholar 

  52. Park JW, Im SS. Morphological changes during heating in poly(l-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering. J Polym Sci, Part B: Polym Phys. 2002;40(17):1931–9.

    Article  CAS  Google Scholar 

  53. Di Lorenzo ML. The crystallization and melting processes of poly(l-lactic acid). Macromol Symp. 2006;234:176–83.

    Article  Google Scholar 

  54. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40(19):6898–905.

    Article  CAS  Google Scholar 

  55. Mihai M, Huneault MA, Favis BD, Li H. Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci. 2007;7(7):907–20.

    Article  CAS  Google Scholar 

  56. Yu L, Liu H, Dean K, Chen L. Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. J Polym Sci, Part B: Polym Phys. 2008;46(23):2630–6.

    Article  CAS  Google Scholar 

  57. Kokturk G, Piskin E, Serhatkulu TF, Cakmak M. Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films. Polym Eng Sci. 2002;42(8):1619–28.

    Article  CAS  Google Scholar 

  58. Delabarde C, Plummer CJG, Bourban PE, Månson JAE. Accelerated ageing and degradation in poly-l-lactide/hydroxyapatite nanocomposites. Polym Degrad Stab. 2011;96:595–607.

    Article  CAS  Google Scholar 

  59. Zheng G, Yang W, Liu C, Yang M, Chen J, Li Q, et al. Transcrystallinity in a polycarbonate(PC)/polyethylene(PE) blend prepared by gas-assisted injection molding: a new understanding of its formation mechanism. J Macromol Sci Part B Phys. 2008;47(5):829–36.

    Article  CAS  Google Scholar 

  60. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38(3):377–99.

    Article  Google Scholar 

  61. Maiti SK, Gibson LJ, Ashby MF. Deformation and energy absorption diagrams for cellular solids. Acta Metall. 1984;32(11):1963–75.

    Article  CAS  Google Scholar 

  62. Gibson LJ, Ashby MF, editors. Cellular Solids Structure and Properties. Oxford: Pergamon Press; 1988.

    Google Scholar 

  63. Reitz DW, Schuetz MA, Glicksman LR. Basic study of aging of foam insulation. J Cell Plast. 1984;20(2):104–13.

    Article  CAS  Google Scholar 

  64. Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, et al. Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett. 2001;1(9):503–5.

    Article  CAS  Google Scholar 

  65. Cao X, James Lee L, Widya T, Macosko C. Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer. 2005;46(3):775–83.

    Article  CAS  Google Scholar 

  66. Giesen EBW, Ding M, Dalstra M, Van Eijden TMGJ. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech. 2001;34(6):799–803.

    Article  CAS  Google Scholar 

  67. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22(1):57–66.

    Article  CAS  Google Scholar 

  68. WagonerJohnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7(1):16–30.

    Article  CAS  Google Scholar 

  69. Terrier A, Sedighi-Gilani M, Ghias AR, Aschwanden L, Pioletti DP. Biomechanical evaluation of porous biodegradable scaffolds for revision knee arthroplasty. Comput Methods Biomech Biomed Eng. 2009;12(3):333–9.

    Article  Google Scholar 

  70. Renouf-Glauser AC, Rose J, Farrar D, Cameron RE. A degradation study of PLLA containing lauric acid. Biomaterials. 2005;26(15):2415–22.

    Article  CAS  Google Scholar 

  71. Weir NA, Buchanan FJ, Orr JF, Dickson GR. Degradation of poly-l-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Inst Mech Eng [H]. 2004;218(5):307–19.

    Article  CAS  Google Scholar 

  72. Iannace S, Maffezzoli A, Leo G, Nicolais L. Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer. 2001;42(8):3799–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Faculty of Engineering Science (STI), EPFL and the technical assistance of the Interdisciplinary Centre for Electron Microscopy (CIME) of the EPFL. The authors would also like to thank Prof. Pioletti of the Laboratory of Biomechanical Orthopedics (LBO) of the EPFL for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. G. Plummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delabarde, C., Plummer, C.J.G., Bourban, PE. et al. Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications. J Mater Sci: Mater Med 23, 1371–1385 (2012). https://doi.org/10.1007/s10856-012-4619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4619-1

Keywords

Navigation