Skip to main content

Advertisement

Log in

Transverse mechanical properties of collagen fibers from nanoindentation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical properties of collagenous tissues, such as tendon and ligaments, are of particular interest as they are found extensively in the human body. In the present study the transverse mechanical properties of collagen fibers are reported for the first time. The elastic modulus was found to be 63 ± 4 MPa, while the viscosity was estimated to be \( 14\;{\text{GPa}} \le \eta \le 56\;{\text{GPa}}\;{\text{s}} \). Comparison with similar data in the literature, for bulk tendon and collagen fibrils, suggests that the apparent modulus of a network of interconnected building blocks is reduced as compared to the modulus of the individual building blocks; in particular E tendon < E fiber < E fibril; this is due to the fact that as the scale of the microstructure increases (i) slippage and sliding between the respective building blocks (fibrils or fibers) increases, (ii) the volume fraction of the stiff collagen proteins decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moore SM, McMahon PJ, Debski PE. Bi-directional mechanical properties of the axillary pouch of the glenohumeral capsule: implications for modeling and surgical repair. J Biomech Eng Trans ASME. 2004;126(2):284–8.

    Article  Google Scholar 

  2. Moore SM, McMahon P, Azemi E, Debski R. Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. J Biomech. 2005;38(6):1365–9.

    Article  Google Scholar 

  3. Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng Trans ASME. 1998;120(6):757–63.

    Article  CAS  Google Scholar 

  4. Stabile KJ, Pfaeffle J, Weiss JA, Fischer K, Tomaino MM. Bi-directional mechanical properties of the human forearm interosseous ligament. J Orthop Res. 2004;22(3):607–12.

    Article  Google Scholar 

  5. Yamamoto E, Hayashi K, Yamamoto N. Effects of stress shielding on the transverse mechanical properties of rabbit patellar tendons. J Biomech Eng Trans ASME. 2000;122(6):608–14.

    Article  CAS  Google Scholar 

  6. Lynch HA. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng Trans ASME. 2003;125(5):726–31.

    Article  Google Scholar 

  7. Chung K-H, Bhadriraju K, Spurlin TA, Cook RF, Plant AL. Nanomechanical properties of thin films of type I collagen fibrils. Langmuir. 2010;26(5):3629–36.

    Article  CAS  Google Scholar 

  8. Wenger MPE, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93:1255–63.

    Article  CAS  Google Scholar 

  9. An K-N, Sun Y-L, Luo Z-P. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology. 2004;41:239–46.

    CAS  Google Scholar 

  10. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.

    Article  CAS  Google Scholar 

  11. Odegard GM, Gates TS, Herring HM. Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exper Mech. 2005;45(2):130–6.

    Article  Google Scholar 

  12. Oyen ML. Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 2007;55(11):3633–9.

    Article  CAS  Google Scholar 

  13. Hauch KN, Oyen ML, Odegard GM, Haut-Donahue HL. Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater. 2009;2(4):339–47.

    Article  CAS  Google Scholar 

  14. Ebenstein DM, Pruitt LA. Nanoindentation of soft hydrated materials for application to vascular tissues. J Biomed Mater Res Part A. 2004;69A:222–32.

    Article  CAS  Google Scholar 

  15. Chaudhry B, Ashton H, Muhamed A, Yost M, Bull S, Frankel D. Nanoscale viscoelastic properties of an aligned collagen scaffold. J Mater Sci: Mater Med. 2009;20:257–63.

    Article  CAS  Google Scholar 

  16. Feng G, Ngan AHW. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res. 2002;17(3):660–8.

    Article  CAS  Google Scholar 

  17. Tang B, Ngan AHW. Accurate measurement of tip—sample contact size during nanoindentation of viscoelastic materials. J Mater Res. 2003;18:1141–8.

    Article  CAS  Google Scholar 

  18. Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2007.

    Google Scholar 

  19. Shakai M, Simizu S. Indentation rheometry for glass-forming metals. J Non-Cryst Solids. 2001;282:236–47.

    Article  Google Scholar 

  20. Gupta S, Carrillo F, Li C, Pruitt L, Puttlitz C. Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater Lett. 2007;61:448–51.

    Article  CAS  Google Scholar 

  21. Pioletti DP, Rakotomanana LR, Benvenuti J-F, Leyvraz P-F. Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech. 1998;31:753–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KEA and SS are grateful for support from KEA’s European Research Council Starting Grant, MINATRAN-211166. The authors are also thankful to Ms. Betty for her assistance in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina E. Aifantis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aifantis, K.E., Shrivastava, S. & Odegard, G.M. Transverse mechanical properties of collagen fibers from nanoindentation. J Mater Sci: Mater Med 22, 1375–1381 (2011). https://doi.org/10.1007/s10856-011-4320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4320-9

Keywords

Navigation